SOME TECHNIQUES IN UNIVERSAL SOURCE CODING AND DURING /2

FOR COMPOSITE SOURCES(U) ILLINOIS UNIV AT URBANA
COORDINATED SCIENCE LAB M S WALLACE DEC 81 R-929

UNCLASSIFIED NOOO14-79-C-0424 F/G 9/4

~ aD-A124 492




i il
s k2
.

{ MICROCOPY RESOLUTION TEST CHART {
NATIONAL BUREAU OF STANDARDS-1963-A j




(N}
o
H
<
o
-
<
2

Next we turn to source coding problems. The determination of the soutces
entropy is of interest as it provides a lower bound on the rate of sny
coda. 1f the switching process is stationary then the output process is

also stationary since it is & memoryless function of the ewitching process.
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SOME TECHNIQUES IN UNIVERSAL CODING AND
CODING FOR COMPOSITE SOURCES
Mark Stanley Wallace, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1982

ABSTRACT

We consider three problems in source coding. First, we consider the
composite source model. A composite source has a switch driven by a random
process which selects one of a possible set of subsources. We derive some
convergence results for estimation of the switching process, and use these
to prove that the entropy of some composite sources may be compv.;ted. Some
coding techniques for composite sources are also presented and their
performance is bounded.

Next, we construct a variable-length-to-fixed-length (VL-FL) universal
code for a class of unifilar Markov sources., A VL-FL code maps strings of
source outputs into fixed-length codewords. We show that the redundancy of
the code converges to zero uniformly over the class of sources as th?
blocklength increases. The code is also universal with respect to the
initial state of the source. We compare the performance of this code to

FL-VL universal codes.

We then consider universal coding for real-valued sources. We show
that given some coding technique for a known source, we may construct a code
for any class of asources. We show that this technique works for some classes
of memoryless sources, and also for a compact subset of the class of k-th

order Gaussian sutoregressive sources.
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INTRODUCTION
The general problem in source coding is that of data compression. The

data which is produced by some information source must be stored or trans-

e Dani PN PN

% mitted. Since there is a cost assocliated with storage and transmission, it

1
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is of interest to encode the data into as small a number of bits as possible

R in order to minimize this cost. If the encoded data is to retain all of

i g
.

the original information then the problem is one in noiseless source coding.

1f there is some allowable distortion then the problem is one in rate-

«

distortion theory or source coding with a fidelity criterion.

i f In these problems an information source is modeled as a discrete-time 1

random process. The source output at each time i1 is a random variable xi.

The distribution of this random variable (which may depend on previous source

[RRN
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i' outputs) determines the probability of a given source output. If the source

outputs (...,xi, L +1,...) form a stationary random process, then the source

is said to be stationary.

A code is defined as a function which maps blocks of source outputs

i e ot s T 0

into binary strings which are called codewords. The rate of a code is the

expected number of bits which are used to encode a source output. If a

source is stationary, then its entropy is defined. The entropy is a lower

s' bound on the rate of any noiseless code, and noiseless codes exist with
- . rates which are arbitrarily close to the entropy. The difference between
: the rate and the entropy is called the redundancy. 1
1f the statistics of a source (i.e., the distribution of the source

outputs) are known then & noiseless code for the source may be derived

using Huffman's algorithm {1]. This algorithm gives fixed-length-to-

A, A - e

. variable-length (FL-VL) codes, a FL-VL code being one which maps a fixed




musber of source outputs into a variable-length binary codeword. The

redundancy of a blocklength n Huffman code is at most n'l, so a Huffman

code may be derived with rate as close to the entropy of a source ss
desired. A variable-length-to-fixed-length (VL-FL) algorithm (Tunstall's
algorithm) is also known for a given source, and if the blocklength n is
defined as the length of the codewords, then the redundancy of these codes
also decreases as n'l.

In practice the statistics of a source are seldom known exactly so
these encoding algorithms do not apply. Universal source coding considers
this problem. In universal source coding the source statistics are assumed
to lie in some class. The goal is to design & code which performs well
(1.e., one which has a small redundancy) for all of the sources in the
class. A sequence of codes of increasing blocklength is called universal
if the redundancy approaches zero as the blocklength increases for any
source in the class,

There are a number of coding techniques which yield universal FL-VL
codes for various classes of sources. Much less is known about universal
VL-FL codes. In Chapter 2 a universal VL-FL coding technique for Markov
sources is derived, and its redundancy is bounded.

A further generalization to the source model is to allow the source
statistics to vary with time. So rather than having a source with fixed,
but unknown statistics, a random process determines the statistics of the
source. This random process, called the switching process, together with
the set of possible source statistics is known as a composite source {24].

Composite sources of various types are considered in a number of papers,

= e o AR T AR - e 1 {3 11 -
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e.g., [2], [3], and [8). 1In Chapter 1 we consider composite sources in

which the switching process is & Markov chain, and the possible sources are
memoryless. (The outputs of a memoryless source at two different times

are independent.) The state of the Markov chain determines the probabilities
of the various source outputs, but the state cannot (in general) be determined
by observing the source outputs. Some convergence properties for the estimate
of the source statistics given the outputs are derived, and these are used to
bound the accuracy of an algorithm to compute the entropy of some composite
sources. Some coding techniques for composite sources are also presented.

In source coding with a fidelity criterion the rate of a code is to be
minimized without exceeding some level of distortion. The fidelity criterion
tells us the distortion incurred when one source output is reproduced as
another output. -There are a few possible approaches to coding in this case.
The outputs may be quantized individually into some finite set of values
and then encoded using a source model such as those used in Chapters 1 and 2.
Another way is to design a code which maps blocks of source outputs directly
to codewords. This is known as vector quantization. There are a number of
techniques known for vector quantization under various constraints. In

Chapter 3 we show how a technique of vector quantization for a known source

may be used to generate a code for an entire class of sources.




CHAPTER 1
STATE ESTIMATION AND CODING FOR COMPOSITE SOURCES

1.1 Introduction

A composite source [24] consists of a set of subsources and a switching
process which selects one of the subsources (see Fig. 1). We consider
discrete-time composite sources with memoryless subsources and a switching
process which is a Markov chain with state space o = {1,2,...,8}, s < =,

Define a state vector Z(i) = (21(1),...,28(1)) by Zs(i) = 1 1f the
switching process is in state s at time i and Zs(i) = O otherwise. The i-th
source output is a random variable xi which takes on values in an alphabet A
according to the distribution Yg(i)(')' So the probability of a given source

output is determined by the state of the switching process, and

- POx, =x[2(1), Ry _1.2(1-1)), Ry _,2(1-2), - .. F = B{X; =x{2(1)]} =¥, (4, ).
(1)

We refer to Z(1) as the state of the source. The switching process is

specified by an S X S matrix Q with elements
a(s'|s) = lz_, (1+1) =1|Z (1) =1]}.

Note that the sequence of states (Z2(0),Z(1),...) 1s not determined by the
outputs (xo,xl,...) even if the state Z(0) 1s known. These sources are not
unifilar Markov sources [1l], pp. 187.

The composite source has been considered as a model for time-varying
sources [2], (3], and for this application it is generally assumed that the
switching process is slow. We do not assume this, in fact, all of our
results are valid even Lf the source changes state with high probability

after each source output.
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Figure 1. Diagram of composite source.
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Since the state of such a composite source cannot in general be
determined from the outputs, it is of interest to estimate it. Let
2(1) = E[z)|x, X, _,,...1 ()

be the conditional mean estimate of the state given the past outputs.
Since 2(1+1) is a sufficient statistic for x1+1, 211+1) may be generated
from x1+1 and 2(1) using Bayes rule [4]; however, some initial estimate
is required.

The first part of the chapter is concerned with the properties of the
estimation process 2(1). Although the method for generating the estimates
recursively is well known, very little is known about the convergence
properties of such processes. In Section 1.3 we consider the situation
where no initial estimate is available, and prove that the estimates derived
from any two initial estimates will converge. For composite source with
only two states we show that the recursive computation of the estimates is
stable. That is, small errors which are introduced in any actual implementa-
tion of the estimation procedure do not propagate. This result is not easily
extended to include composite sources with a larger state space. The mean-
square error of the estimate, or more generally the expected value of any
function of 2(1) and Z(1), is determined by the stationary distribution of
the estimation process. However, in general this distribution is not known
to be unique. We show that the estimation process has a unique stationary
distribution, and give an algorithm which may be used to compute this

distribution to any desired accuracy.




Next we turn to source coding problems. The determination of the sources

entropy is of interest as it provides a lower bound on the rate of any
code. If the switching process is stationary then the output process is
also stationary since it is a memoryless function of the switching process.

So the probability of a block X = (xl,xz,...,xn) of source outputs given no

N e ey ey g

previous outputs may be determined using the stationary distribution of

[T )
. v

the switching process as the initial estimate 2(0). Since the source is
stationary we know that its entropy is

lim -1

, -n”" I P{X=x}log P{X=x} . 3)
; | n-e x € A"

This does not imply that the estimation process has a unique stationary

P
» f

distribution. As previously mentioned, however, such a distribution exists

if the source has two states, and in this case the entropy is
J B, |2(0) = z)u*(dz)

where u* is the stationary distribution. For k-state composite sources,

k > 2, we do not prove that a unique stationary distribution exists.

; ; ; We construct fixed-length to variable-length (FL-VL) codes for composite
§ . sources and show that their redundancy is bounded by n'l(rlog§l4-1). (A FL-VL
‘ code maps fixed-length blocks of source outputs into variable-length codewords.)

Again propagation of errors i{s a problem, and so it is not clear whether the

technique is implementable for long blocklengths. For the two-state case
we show that errors do not propagate. In addition the effect of inexact
knowledge of the source parameters (i.e., switching probabilities and subsource
statistics) is bounded. This result is used to construct a universal code for

- a class of two-state composite sources.




Finally we construct codes for a special class of composite sources with

probability of switching into any state is independent of the current state.

1.2 Convergence of State Estimates for Two-State Composite Sources

{ an infinite state space. This class of sources has the property that the
}—, Let § be a composite source consisting of two memoryless, finite-entropy

subsources with alphabet A and a binary Markov switching process. The state

A e e S e S A

I' at time ¢t is zt, a random variable taking values in# = {0,1}. The transition
i probability matrix Q = {q(zt|zt_1)] of the switching process [Zt] is

specified by two values. For ease of notation let a = q(l]O) and B = q(0|1),

! l then q(OlO) = 1-a and q(1|1) = 1-p. The composite source § is determined
| - by o, B, and the two subsource distributions [yi(x);x €A} L =0,1, so we
' ' i write 6 = (a,B ,Yo,yl). Let A denote the class of such sources for a given
! i ) alphabet A. Define the estimate
?’ | [ g, = B2 XX, 1.--] - (%)
; _ | This estimate has the following property.
§ 4 Lemna 1.1. Let _1;' 4 (x_l,x_z,...). Then g' d 5_1 - 7‘0 forms a Markov chain.

; ~ Proof: If z =E[2_;|X = x7] then

. -l

1 -
T P(zg=s|2_j=s',Z_;=z,X mx"1P(z_;=s'|2_j=z,x =x"]

P{z,=s| i_l-z X =x-}= '
s'=0

1
‘ = g p{zo-alz_l-a ']P{Z_l" "X =) o)

s'=0

= P(Z=s|Z_, =0} (1-2) + P{zy=s|z_,=1}z !

= P{zjns|2Z_, =]
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where (5) follows since 2_1 1s & function of X and since the transition

probabilities of the switching process do not depend on the outputs.
Given ic = 2z and xt‘.’1 = x, then Lemma 1.1 implies that z:ﬂ is

given by Bayes rule {4], so 2‘: is the conditional mean estimate of zt

given observation of the source output up to time t.

{ - 1|z =z} ¥, (x)0,(2)
- £ () 8 e 7 -1 (6)
’(xm x|z, = 2} RANG
i=Q) °
where
Bz + (L-a)(1-2) ; 1i=0
1, () 4 Pz, - 1|5t =z} = 8
(1-p)z +a(l-2) ; i=1 .
1f we define
N 1
px]z) = P{x_, = x|z, =2} = 120 Y, M, (2) . (8)

then p(xlz) is the probability that the new estimate will be fx(z) given
that the old estimate was z. If g is the distribution of 20 then the dis-
tribution of 21 is uT, where T is the measure transformation defined by

WI(B) = T I 1 p(xlz)u- (dz) , 9
x€ A

where B< [0,1] and f;l(n) Q(ze¢ (0,1]: £,(2) € B}. The transformation T




has the following contraction property. The distance measure used here

is the p-distance [5] which is defined by

|
[
L
L

) cvenegs =iy ¥ SO TR

F@,v) = inf [|x-y|n(dx,dy) , (10)
; TEP
i‘ where P is the set of joint distributions with marginals p and v. We first
r ' i prove the following theorem.

s, §
.

Theorem 1.1. (Contraction property of T in the p-metric)
, If . and v are two distributions of the state estimate for a twoe-state

composite source with memoryless subsources and if T is the transformation

1 (9) for this source then
i FWT,vT) < |A|F@s,v) 1)

' i where A\ % | -0 -B anda = q(1]0) and B = q(0|1) are transition probabilities
o for the switching process.
% Proof: See Appendix A.

The following corollary i{s an immediate consequence of Theorem 1.1.

Corollary 1.1.

- i -

plyvg) S AT 8 tgavg) (12)
where by u.o'ri and v i " vo'r". We now show that a unique stationary

distribution exists if |A| < 1.

g - Theorem 1.2. The state estimate ;.: has a unique stationary distribution u¥*
1f A} < 1.

Proof: Since the space of possible distributions is compact in the p-metric

we know that a subsequential limit exists. For any two distributions i,,vg,
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plagav) s AT (14)
Let vy = ""j‘ Then (14) implies

- i

’(""1""'1+j) s "‘I (15)
for any J. If there exist two subsequential limits u' and u" with
b = p' and p 3 - u" for subsequences ki and ji. then for arbitrary i

i i
- min(ji,ki) .
1 ‘1

It follows that p(p',u") = 0, and thus (“1} has a unique limit. Since

p'= lim uo'ri = lim u.o'l‘“'l -

{f ~o» { ~o

p'T Qa7)

the 1limit is stationary. If the alphabet A is finite then we may

compute this scationary distribution to any desired degree of

accuracy as follows. Let p* denote the stationary distribution. From a
ailtdbution ﬁj-l concentrated on the set 0 & [-17:—5, i =1,...,n} we

generate a distribution ﬁj onn' & [fx(i'—;—k); x€ A; 41 =1,...,n} using
the recursive equation (9). Then a distribution § j concentrated on Q is

generated using
By EEh e g dh iy 5 1enn (18)

(We use {x} to denote the set containing the point x.) This algorithm is

clearly implementable since only a bounded number of points is considered,




and if we define

e, 5@ (19)

e+ & 1n o« sé 8 {2n[1- 137t (20)
j - &

ey s |x|-1 +é&. (21)
So we may compute ﬁj such that S(ﬁj,u*) < ¢ for any ¢ > 0 by =hoice
of n and j sufficiently large. Equations (20) and (21) follow simce
(19) implies

$Gyaiy s o7 (22)
and from Theorem 1l.1l _

PG %) < Mo Gy_y %

80

-1
ey < |>.|ej”1 + @2n) " . (23)
In the limit as j goes to infinity (23) becomes
a* < [a|ev + (20)7! (24)
which gives (20) and subtracting & from both sides of (23) we have

¢ -ds |x|(.j_1-a> (25)

wvhich gives (21).
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The number of computations required increases linearly with both n,

!
i
f
:

1_ the size of the vector which approximates the joint distribution, and j, the
-~ number of iterations. The storage required increases linearly with n. If

, 1' we fix j according to the limiting error & by
' [ A =2 (26)

I‘ then j is of order log n. So the number of computations required to derive

1

a distribution within n~ = of the true stationary distribution increases as

n log n, and the storage required increases as n. This algorithm was

* 1 implemented for A = {0,1}, i.e. binary memoryless subsources. Two computed
distributions and their associated cumulative distribution functions are
, - illustrated in Fig. 2. The distributions are concentrated on 1000 points, and

the p-distance between these distributions and the stationary distributions

4
[

is at most .006. The distributions are not smooth, and it does not appear
likely that a closed form analytical description exists.
The computed distribution may be used to bound the performance of the

estimator as follows. The mean-square estimation error is
s 2 2 a2
Lz, -£)°] = E(2]] - E(2Z(]
- E[z,] - E[32] @n
t t

where (27) follows because zi = z:. If the switching process is stationary

and ergodic then

&
E[Zc] -m . (28)
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If u* is the stationary distribution of the estimacte 2'_- we have
I 2. o2

E[z.] = [ z° pr@z) . (29) <

[ ’ |

Given a distribution fi such that p (u*,ji) is small, we use the following
-{. theorem to bound

1 1

I a b I 2 & - I, 2% au (30)

| in terms of p (u¥*,3).

Theorem 1.3. I1f p and v are probability measures on [0,1] then

1 1
|[ fau-[ fav]< sup '@ pwn) . (31)
0 0 x € {0,1]

Proof. The theorem follows directly from integration by parts. That is

1 .11
J fau = £G0)| -[ £'(w(0,x]ax
0 o o

80

1 1 1
gL -j‘o fav| = U‘o £'(x) (v(0,x] - 1[0,x])dx|
0

T T s et b - - ey 1,

1
<[ £ @] |vio,x] - 6[0,x]|dx (32)
0

s sup (£ &pleGy) (33)
xo€[0,1]

! Equation (33) follows because for one-dimensional distributions (5]

B o) = [lel0,2] = v(0,x]|dx .

So 1if £(z) = zz we have
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We have
' 44
B'(Xy]z_) =2) 8 7 H(Xylz_, =2)
= £ p'(x|z)log p(x|z) +p'(x|z)log e]
x€ A
=-[ T p'(x|z)log p(x|2z)] (41)
x € A
and
p(x|2) = z[y, (x) (1 -B) +¥y(x)B] + (1-2) [y, (X)a + ¥4 (x) (1 =) ]
2 min{{y, (x) (1 -B) +Yy(x)B1, [, ) +yy(x)(L-)1} . (42)

If p(x|z) = O for some x € A and z € [0,1] and p'(x|z) > O then the theorem

does not provide a bound on A'. However, if «,f € (0,1)

then
p(x|z) 2 81y (x) +Yy(x)] (43)
where
5 & minfe,p,1-0,1-8} . (4t)
So
' (Xy|2_,=2) < - g Alp'(x\z)llosfélvl(x) +¥g(x)1}
= M2y -y |108le Ly, () +yy 01
x€A
< 2 |a|10g 871+ |A] Bilyg) +¥(y,)] (45)
where

K(yy) 8 -2 v, ()10 v, (x)
x €A

Recall !K(‘yi) is assumed to be finite. If we do not have o, €(0,1) a bound

may still be derived if yi(x) 2¢>0, for all x€ A and L = 0,1. Note
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AS 25@,u%) , (34)

hence the mean-square estimation error may be computed to any desired
accuracy.
Under certain assumptions the entropy of the two state composite sources

may be computed using the approximate stationary distribution. Lemma 1.1

and (1) imply that

X -3 (35)

1~ %o
is a Markov chain, where gf 4 (X_l,X_Z,.;.). Since 2_1 is a function of

X it follows from (35) that 1f z = E[Z_;|X = x”] then
a(xolgt_' =x") = n(xolz_1 = z)

= - T p(x]z)log p(x|z) . (36)
x € A

* ~
Then 1f p* is the stationary distribution of Z_l, the entropy of source 6 is

1
X () = j‘o H(Xy|Z_y = z)u*(dz) . (37)

If § is the computed distribution, we define

. 1 a
X () = j‘o H(Xy|Z_; = 2)ii(dz)

n -~
= LEGlz = iy b (38)
where
v, 8oty . (39)
We now use Theorem 1.3 to bound

a8 e ) - R @] . (40)
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that the alphabet must be finite in this case. Under this assumption
p(x|z) 2 ¢ s0

-1
B' (Xy|2_y=2)s 2 |A|1og ¢ " . (46)
In both of these cases Theorem 1.3 implies
A' < Kp (,u*) 7

where K < » depends only on the parameters of the source, so the entropy
may be computed to any desired accuracy. Note that the complexity of the
computation is the same as that of the computation of the stationary
distribution. This algorithm was implemented and the entropy was computed for
some two-state composite sources with binary alphabets. In Fig. 3a a family
of curves is given. In each curve YO(O) = 71(1) is fixed and o =8 veries
from 0 to .5. The entropy increases to one as the switching probabilitfes
increase as would be expected. The same curves vésuit 1f o nud P are replaced
by l-«o and 1-8. In Fig. 3b yo(l) = ,001 and 71(1) = .5 for all curves.
The ratio o/(a+8) is fixed in each curve, and p varies from 0 to .5. So
in each curve the proportion of time spent in state 1 is a/(x+B). Again
the entropy increases as the switching probabilities increase.

The p -convergence result may also be used to show that estimates which are
derived using different initial estimates of the state converge. Consider
two different initial state estimates, z, and 20. 1f zi(lz_") and ii@") are
the estimates at time i derived using the recursion (6 ) when 5_" = (xl,...,xi)
is the output of the source, the following theorem shows that these estimates
converge on the average. Define p(_ |z )= Hl p(xj+1|zj(_ )), where p(xlz) is
from (8). So p(_ |z) 1s the probability :hit x" 18 output given initial

estimate zo.
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Theorem 1.4. With zigi) and 21@5") as above (and \ ] l-a-B)

Proof. See Appendix A.

Corollary 1.2. If m is any joint distribution of z, and io then
" 1 1 "~
E [F (z5,8,)] = j’o j‘o F, (zg,2,) 4 (49)
< )t (50)

since lzo-iol < 1 for all z; and 30.

Theorem 1.4 implies that the recursive computation of the state estimate

is stable. That is, suppose that some error e where Ieil < ¢, 18 introduced
in the computation of the i-th estimate. Then if the initial estimate in the
computation differs by some e from the actual initial estimate (i.e., the
estimate derived from observations of all past source outputs), the average

error after i steps is bounded by

i a ~ i -1
A Ailzi(-’ﬁ ) -2, EHIBE 12p) = | eleg] rerr- 1T (51)

Here 21(51) includes the computational -errors e, .

Now suppose that the parameters of the composite source are not known
precisely. That is, suppose that the source is & = {o,B ’YO’YI] and we use
the parametefs for another source @ = (a',ﬁ',y&,yi] in the recursion (6).
Under the assumption that the parameters for 6 and ¢ are within ¢ the
average error in the estimate derived using the parameters for ¢ is of ord

order ¢. Here we must assume that 6,p € A'(§) for some § > O where
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Ay R {0 €n: ptx]z) 26, ¥ x €4, z€ [0,1]). (52)

This condition is satisfied if, for example, Y:I.(x) 28>0, for all x€ A
and 1 = 0,1. Again this implies that the alphabet A is finite. We also

include computational errors e,, |e,| S ¢ . Let z) and £) be two initial

0

i a 1
estimates of the state Zy. Further let z, (x ) and Z,(x’) be the estimates
derived from these initial estimates using the recursions for 6 and ¢
respectiveiy. Note that now these estimates are derived from different

recursions and that 21(3:_") includes computational errors so
~ 1 ! ~ 1'1
21(5 )= fxi(zi_lg )) + e (53)

vhere £ 18 defined as £, (6), (7), but with the parameters for 9. Then the
following is true.

Theorem 1.5. If 8,p € A'(5) then

F1<20’20) g zi: l‘z‘i@i-) ’zi(’;‘i)ﬁ’@.i‘zo)
X

s Pglt + {1- 217t (54)
where

K 8572[3¢ +3¢2+67) ¢,

p(gilzo) is the probability that 51 is output from source 6 if the initial
estimate is z;, and ke 8 l-a-f.
Proof. See Appendix A.

So the estimation procedure is robust; that is, small errors in source

parameters do not cause unbounded errors in the estimates.
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1.3 Convergence of State Estimates for S-State Composite Sources

Now consider the more general case where the Markov chain has state
space o = {1,2,...,5} and selects one of S subsources which are discrete
memoryless sources with alphabet A. Let Y.(x) be the probability
that a letter x € A is output given that the .Hnrlwv chain i{s in state s € /.
Let A denote the class of such sources for a given A and /. Define a
state (row) vector Z(i) = (21(1),22(1),...,23(1)) by Z’(i) = ] if the chain
is in state s at time 1 and Z (1) = O otherwise. Let Q ~ (q(1]|})} be the

state transition matrix. We define

2@+ = BIZW) (X%, _1b-e0] (55)

where X; is the output at time i. So 2._(1.) is the conditfonal mean estimate of

Z(1) given the outputs up to time 1. A recursive equation for _2_ is (61,

21+ = ZWOT®IZW T (56)
where xi+1 = x is the source output,
T(x) 4 Q P(x), (57)
¥, (x)
P(x) = Y, (x) (58)
" g (x)

is a diagonal matrix and 1 is a column vector of 1's. The probability that

source output xi 41" given _2_(1) = z 1is

p(x|z) 8 2101 .

S
1.0 L - Py 2
= - =T~ e e PRSP e v
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let x = (xl,....xn), x € A, and define a matrix T by
- n
T@ = 0 T(x) . (60)
i=1
Then if 2(0) = z and x consists of the first n outputs, the n-th state
estimate is
i) =21 @ (2T @t (61)
and the probability of x given z is
CP]E) 22T 1. (62)

A source 6 € A is specified by Q and {P(x): x € A} so we write 6 = {Q,P(*)}.
Let IP (/) denote the set of probability distributions on +/. We now show
that under certain conditions if z and §_ are in IP ¢/), then the estimates

generated from (61) converge. Define
Re) = {0 €A: qi|l) 2¢>0, 1,5 €], (63)

Then we have the following theorem.
Theorem 1.6. Let § € K(c). If z and Z are probability vectors on o such

that $(x|z) > 0 and B(x|2) > 0, x = (x;,...,x), then

2% @Gl - 8T @B@lD1™Y s ¢! (64)
where
2 2
¢ 8 (-Golle) e (65)
(1-(S=-1)e) +¢

and ||+|| 1s the norm defined by |lu-¥| = m{lui-vilzls 1 < n}.

Proof. See Appendix A.
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The rate of convergence here is not as fast as that of the average
convergence result for the two-state composite source, but the convergence
bound holds for any sequence of outputs and not merely an average. The
restriction that we must have ﬁ(glg) and B(glé) positive is of no real
importance, since 1f P(x|z) 1s zero, this means that the estimate z is
incorrect so we may choose a new initial estimate z' such that p(x|z') > 0.
A more important drawback here is that the theorem does not imply that the
estimates converge at each step (in fact they do not in general), but only

that after n steps they are within Cn-l. The theorem does not imply that a

—

computed estimate remains close to the true estimate despite small
computational errors at each step.

Theorem 1.6 also applies in the more general case where the transition
matrix Q depends on the current output x. So we have a family of matrices

{Qx: x € A}. If we assume that the elements of Qx are at least ¢ for all

x € A, then the theorem holds. The only change necessary in the proof is 57
that Q is replaced by Qx‘
1.4 Generalization to Arbitrary Subsources

Some of the estimation results also hold for memoryless sources (not
necessarily finite entropy) having an arbitrary alphabet A. Consider first
the two state composite source. Where previously we assumed that the
alphabet A was countable and that the subsources had finite entropy, here

we assume that the sources are specified by two probability measures Po

and P1 on an alphabet A. If we define T = k(Po-FPI) then the Radon-Nikodym
dpP -
derivative -E% exists, 1 = 0,1. Then given the i-th state estimate zi =gz

and the (i+l)-st source output x1+1 we have
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dP1
- —=n ® 0;(2)
21 = Fx®) = 7 ap, (66)
T == (x)1,(2)
1m0 dw i
which is Bayes rule for this case. Define
| 1 dPi
p(x|z) = T —==",(2) (67)
=0 dm ni
so that
p{x, € B|Z, =z} = J‘B p(x|z) m(dx) . (68)

Then 1if Bo is the distribution of 20, the distribution of z1 is given by

B (B) = P(x|z)n (dz) m(ax) . (69)
18 1, 1 g P

If we use the recursion (69) in place of (9) then Theorem 1.1 holds for these
generalized subsources. The only modifications necessary to the proof of
?heorem 1.1 are to replace Yi(x) by S;%, i =0,1, and to replace all
;unnmtioﬁs over the alphabet A by integration with respect to the measure 1.
Corollary 1.1 and Theorem 1.2 follow directly from Theorem 1.1 so we know
that the state estimate ii has a unique stationary distribution. However,
the computation of an approximation to this stationary distribution may not
be performed as it was in Section 1.2 because the alphabet is not finite.

The average convergence of Theorem 1.4 also holds, if we modify the proof

in the same way a's the proof of Theorem 1.1. Theorem 1.5 is not easily

generalized though, as it was necessary to assume finite alphabet size.
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The convergence result (Theorem 1.6) for S-state composite sources also
generalizes. Let Pi’ i =1,2,...,5 be probability measures on A for the
subsources. Then if we define 7 = §°F T P,, the Radon-Nikodym derivative

dp i=1 dp

—df-T- exists, 1 = 1,2,...,5. Lf ve replace v, (x) by —d%(x) in the definition

of P(x) (58) then Theorem 1.6 holds, and the same proof is valid.
1.5 A Coding Technique for Composite Sources

Let 6 be a composite source as in the previous section. The switching
process has state space o/ = {1,2,...,8} and each subsource is a discrete
memoryless source with alphabet A. If the state of the switching process
is s then the probability of the source output x is ys(x), independently
of previous states and source outputs. Let IP (/) be the set of
probability distributions on o and define _e_J € TP @/) to be the probability
(row) vector whose j-th element is one. If the switching process is in
state j at time t we define the state Z(t) = g’. The transition probability
matrix for the switching process will depend on the current state and the

current source output. So we define

a, (1]) = Plz(e+1) = etz(e) = &), x(v) = ) (70)
and

q = {g,@N: L,5€x} . (T

We do not require the elements of Qx to be bounded by some ¢ > 0 (as was the
case in the previous section). Note that this class includes unifilar
Markov sources, that is, sources where the next state is a deterministic

function of the current state and source output. For these sources the

elements of the matrices Qx’ x € A, are either zero or one.
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We now construct a variable rate code for a given composite source and
bound its redundancy uniformly over all initial state estimates. The codes

considered here are fixed-length to variable-length (FL-VL) codes, so they

encode fixed-length blocks of source outputs into variable-length binary

!

codewords. The blocklength of a FL-VL code is the number of source letters

Wit
"

encoded in a block. The n~th order entropy of source 6 given initial state

—ama——)
B .

estimate 2(0) = 2 is given by
H0,2) = -0 £ Bx|z) log Bexlz) (12)
€A
where

£T (x)1 C(13)

and T is as defined in (60). Sso nn(e »2) 1s a lower bound on the rate of any
blocklength n code for source 6 and initial state estimate z. Let L (x)
'1, be the length of the binary codeword for the output block x € A". Then the

rate of the code is

R (0,2) & a7 IR EINC (74)

and the redundancy is
0.0 §r (0.2 -8 6,2 . (75)

If ve let 2 = (zl,...,zs) then

@2 = 2T @1 (76)
8 1
= T zpxled) an
1=1
s nax{px|el): tes) . (78)
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So to design a code for 6 and 2(0) = z we first design codes for initial
state estimates _c_i, i €, and combine these S codes into a single code by
prefixing each codeword with r].og S| bits. The code for initial state 31

is the Shannon code for probabilities i@[g"), so the length of the codeword

for x 1s
1D @) = M-10g Bx|etN 9)
v B |
<1 - log pexled) - (80) |

The codeword for x in the combined code is then the shortest of the §

possible codewords, so the length function of the combined code is

£ = wia{t D @): 1 €2} + Mog s (81) |
!

< -log[mx{EQx_lgi); i € #}1+1+ og Sl (82) ;

S -log[P(x|z)1+1+Tlog Sl ; VzE P W) . (83) 3

The rate of the code when applied to 8 with 2(0) = z is
R ©,2)Sn {1+Mlog §1 ~ I _ flx|z)los $ex|2)} (84)
" x €A ,
=8 (8,2 +n {1+10g 1] , (85)
and so 1rs redundancy is bounded by
r (9,z) < n-1[1+ Mog s11,

for all z € P /).
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One problem with this coding technique involves the propagation of
errors. To determine the codeword lengths zn the probabilities of the
codewords must be determined. This requires n matrix multiplications, and
there is no guarantee that errors will not propagate. Theorem 1.6 implies
that the effect of an error on one step will decrease exponentially, but
does not imply that the effect of small errors made in each step will remain
small. Propagation of errors is not a problem when coding for a unifilar

Markov source with finite space and alphabet. For such a source the

probability of a source vector x given initial state 8o is
n
PE = xlsg) = 1 plxls; ) 87)
N[(x"):ggso)]
= I I px|s) (88)

x€A 8 €M

where N[(x,s),(g,so)] is the number of times in the block x that the letter
x occurs when the source is in state 8 given that the initial stace (s 89
The product (88) may be computed using at most |A|+|s’| multiplications for
any n, 8o the effect of computational errors need not increase as n becomes
large. Some further convergence result is required to show that the code

for composite sources is implementable, although in view of the convergence

result of Theorem 1.6 it is probable that the computation is stable.
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ott [{7] considers the same coding problem but assumes that the encoder
and decoder have the initial state estimate for the source. The code he
constructs is simply the Huffman code for the source given a specific
initial state estimate (and is optimal for that estimate), but it is not
universal with respect to the initial state estimate. He does not prove
any convergence results which would indicate that the computation is stable.

One modification which improves the code performance is as follows.
Since only 2" codewords of the S x 2® possible codewords are used, the
additional codewords may be removed and the remaining ones shortemed. This

technique is employed in Section 4 of [11]. Define

"n(i)
pr(x) = 2 —T® (89)
y € A"
Then
£, @) 2 M-log p*(x)] (90)

so the Shannon code for pg performs at least as well as Ln.

The performance of codes with blocklengths n = 5, 8, and 10 which
incorporate this modification are presented in Fig. 4. Tﬂe sources for
which the codes are designed have YO(O) = 71(1) = .9'and o = B between
0 and .5. Each curve gives the performance of a set of codes of the
same block length. The rates and source entropy are givea in Fig. 4a,

and the redundancies in Fig. 4b.
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1.6 Stability of Coding and Universal Coding for Composite Sources

If the composite source consists of only two subsources as in
Section 1.2 we may show that the effect of computational errors on the
redundancy may be made small. This result is implied by the following

theorem which bounds the mismatch redundancy; that is, the redundancy

which results when a code designed for a source ¢ is applied to another

v

Bouawaes §
.

source 8. The theorem includes the effect of computational errors. We

return to the notation of Section 1.2. Let 6 = {o,p 'YO’YI} and

mmeany

Q= {a',ﬂ',ya,yi] be two composite sources (recall that o = q(1]|0) and
i B = q(O‘l) are the transition probabilities for the switching process).

We assume that 6,9 € A'(5) where

JERRSE———

I A') B (o €n: pix|z) 2 6, x€ A,z € [0,11} . (91)

Let 'f»e (Eilzo) be the probability that 51 - (xl,...,xi_) is the output of

R

, source § given initial estimate z,, and similarly for 'i':cpqi'\zo). Let Ei(_:gi)
be the estimate of the state used in designing the code. So 21@1) includes
computational errors e as in Theorem 1.5 and we again assume that

le,] < ¢. Then if the initial estimate is z, the mismatch redundancy is

. - (92)
) Theorem 1.7. If 6,p € A'(§) and corresponding parameters (i.e., switching
probabilities and subsource statistics) for sources @ and ¢ are within ¢,

, then 1if zn is the code designed for source ¢ we have

-1 [
rn(zn,e) < Kn " + Ke (93)




where
K°2+6-1loge [1-]1-&-5\]‘1 (94)
and

k' =6 log e (1-[1-a-B|17Hs (3¢ +3e2+e3 ] +5¢ +2¢2]  (95)

Proof. See Appendix A.

We may use this mismatch result to construct a sequence of minimax
universal codes for any subset & of A'(§). A sequence of codes
[L:: n=1,2,...} is said to be minimax universal for a class of sources 3

if the redundancy

r (4%,8) ~ 0 (96)

uniformly on & as n - ®, We construct the code as follows. The alphabet A
is assumed finite so let A = [1,2,...,.]}. Let 1,} and K(m,x); m = 0,1,

x = 1,2,...,J-1 be nonnegative integers less than n. Defi:ne a set 1
B (1, 1,K(+,)) = [0 € #: @ € [1a",t+Dn™ ], B € [3n™h, (a+0)n7],
¥ (x) € [K(m,x)n ", (K(@,x)+1)n 11}, (97)

Note that Bn has dimension 2 + 2(J~1) = 2J since each subsource is specified
by J-1 parameters. From each non-empty set Bn choose an element ¢ called

the design point source. The number of design point sources is bounded by

nz‘I, since there are at most this number of sets Bn. A Shennon code "n

?
is then constructed for each of the design point sources as in Section 1.5.

A prefix of length (23 log nl which identifies @ is attached to the codewords

in the code ‘n . The universal code is then constructed by combining these

?

codes. The universal code 1s uniquely decodable since the prefix
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specifies ¢ and since the codes l.n cp are uniquely decodable. The encoding
»

procedure is simply to choose the shortest codeword of the nz

J possible
codewords for a given output block x, so the length function for the
universal code is

L2 (x) = 23 log nl + min{s 0.0} (98)
P

for any 6 € ¥ there exists a design point source ¢ whose parameters are
within n.1 of the parameters of 6. Let ¢ be this design point source for 6.

Then we have
-1
r U%,0) S 07123 log ml + £ (4 .0) . (99)

Since rn(l.n :P,e) is the mismatch redundancy of Theorem 1.7 with ¢ = n-l
»

we have
r (4%,0) < n {27 log ol +% +T) (100)

for all 6 € ¢ and the sequence of codes !.'g is minimax universal.

If some of the source parameters are fixed for all & € A so that A has
dimension M, where M < 2J, then 2J log n is replaced by M log n in (100).

To illustrate this procedure, Fig. 5 contains a graph of the redundancy
of a blocklength 8 code for the class of binary two-state composite sources
with YO(O) = 71(1) = .9 and a=8 in [0,1]. The code was constructed by
combining codes designed for a =g = ,05, .30, .70, and .95 respectively.

The redundancies of the codes for o= .05 and .30 are also graphed over the
class of sources. If these curves are reflected about o = .5 then they
become the curves for o= .95 and .70. Note that the maximum redundancy of

the combined code is much less than those of the other codes.

e e o e e P S
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Figure 5. Redundancies of three codes over the class of two-state binary
composite sources with yo(O) = 71(1) = 0.9 and a =8,
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1.7 Coding for an Infinite-State Composite Source
The coding technique derived in Section 1.5 applied to composite

sources with a finite number of subsources. We now construct a code for

a certain type of composite source with an infinite state space, and show

1

that the rate of this code approaches the entropy of the source.

The state space o/ is the class of all memoryless sources with alphabet

st ovsine

A= (1,2,...,3). We define o/ such that if y = (yl""’yJ-l) is a source

i in J/ then
'\ ' v, ) 8 plx, = k|z, = 3}
? I = Y (101)
where
! l y; 81 ng Ve - (102)
) k=1
I At each integer time i the switching process Zi changes with probabilicty

a. If it does change then it takes on a new value according to a
probability measure P* on o which does not depend on the previous state.
So each time the source changes state the effect of the past states is
eliminated. We first assume that P* has a density which we denote z*. So

1£2 =J€/ thenz , = § with probability 1-a, and

Pltz1+1 € B} = P*(B) (103)

with probability o, where B is a aubset of /.
The estimate of the state zi given the past outputs (xi’xi-l"“) is

a probability measure Pi on o such that

'@ = plz, € B|% =x,X,_ =x,_ 1,0 . (104)




If we assume that this measure also has a density ii we wmay derive it +1
from ii and N using Bayes rule. Let Pz be the density of Z given

20 =z, Then we have

| azk + (l-a)zo . (105)
Further, if px’z is the joint density of 21 and x1 given 20 =z, then

-9 p,@ - (106)

So if x1 = k and 20 =z, then 21 is given by
Py 2 QoK)
[ pr, 2@

2,@ = £,(20D) =

Tl @ + A -0z, @1

(107)
o [ ye*@dy + (1-of yz,(@dy
P~ s
where 7 = 6'1”"’3'.!-1)' Since 21 is of the form
2, = ylke* (@) +K'zo@1 (108)
vhere X and K' do not depend on y, all subsequent densities 21 derived
from il will be of the form
~ J nj
2, @ = . z Ellyjl (R(mp,.e0omp)zo (@) +K' (), .. omp)ee(p)]
RRERELI I (109)
T mj <t
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where K(*) and K'(.) do not depend on y. So although the estimate ii is

infinite dimensional, given z, and z* only a finite number of constants

K(*) and K'(*) are required to specify 21 for any 1. Further, knowledge of
the moments of z, and z* 1s sufficient to compute these constants.

The probability that X, = k given 20 = z,, denoted p(k]zo), is the

denominator of (107), and the probability of a block of source outputs X,
denoted ‘5@\:0), may be computed by generating 21 recursively from (107).
Given this estimation procedure we construct a code as follows. Compute
the probabilities 'ii@lz*) of output blocks x € A%, vhere z* is the density
of P* as previously defined. The code is then the Huffman code for these
probabilities. -So if the length function of the code 1is “n then this code
minimizes the redundancy
r,8,z%) = T Bx|z0)(L @ + log Bx|z®1 . (110)
x€A
Let ¥(9) 4 H(XO‘X-I’ ...) be the entropy of source 6. The probability of x
given no previous source outputs is P(x|z*) since z* is the stationary
distribution of the switching process. I1f we define Rn(e) to be the average
rate of the code "n when applied to source § then

R (8) = n'lx g . 5(3_‘;*);“@) . (111)

The following theorem gives an upper bound on the average redundancy of the
code ‘n'

Theorem 1.8. Let rn(e) = Rn(e) - xc(e) be the redundancy of the code ln. Then

£ (®) S a~la - &1- log ) .. (112)
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Proof. See Appendix A.

We agssume that both P* and the estimates Pi have densities. If they do

not the estimation procedure may be modified as follows. Let T = !5(P*+P°),

L
where U is the initial estimate. Then SE= and SE- exist for all { 2 0.

ap* dro dnm dr
If we replace z* and z, by an and in in (105)-(109) and integrate with
1
dp

- respect to 1, then (107) gives a recursion for an " The code zn is then f

defined as before and the redundancy bound holds.
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CHAPTER 2

én UNIVERSAL VL-FL CODING FOR MARKOV SOURCES

- 2.1. Introduction and Review of Previous Results
An efficient universal noiseless source coding technique 1s presented
{ in [11] for memoryless sources. It is extended to unifilar Markov sources
in [12] and [13]. The codes constructed in these papers are fixed-length-
{. to-variable-length (FL-VL) codes; that is, they encode fixed-length blocks

of source outputs into variable-length binary codewords. We use the same

basic technique to construct universal variable-1ength-to-fixed-1éngch
(VL-FL) codes for unifilar Markov sources. The performance of these VL-FL ;
codes for binary memoryless sources is compared to that of the FL-VL codes
constructed in [11]. We show that for medium blocklengths (~ 10) the VL-FL
T codes perform better and that for long blocklengths (~100) they perform
about as well as the FL-VL codes.
é Next a review of some terminology of universal noiseless coding (1l}] in
- a fixed-length-to-variable-length (FL-VL) framework may be helpful. Let A:
be a class of stationary sources. Each 8 € A has a probability function

: Py which gives the probability of the various possible strings of outputs.

A FL-VL code of blocklength n maps blocks of n source symbols into variable-
\. length binary sequences. Let x = (xl,...,xn) be a block of source outputs.
A FL-VL code is specified for our purposes by the length function Ln(g)
which gives the length of the codeword for x. The rate of a FL-VL code

applied to a source 6 1is

-1
R (£ ,8) =n é A0 L (®)pg () (113)




vhere A" is the set of possible n-tuples from source 8. Defining the n~th
order per-letter entropy of O as
-1
H (8) =-n 2 K Py (x) 108 pg (x), (114)
p.o

the n-th order redundancy of the code is

r (£.,8) =R (£ ,8) - H (8) . (115)
Let
§n(zn) 4 sup{rn(zn,e): 8 € A]. (116)

A sequence of codes !.1,!.2,... is weakly universal if

3

: - 11

I R _(4,8) ~ H(®) VYeeEA (117) 1;

-~ it

5 as n -~ ® yhere H(6) = 1lim Hn(e) is the entropy of the source 6. It is H
n=—-e

strongly universal if the convergence of (117) is uniform and minimax

e universal if f(zn) -~ 0as n~ =, Let ?(n be the set of blocklength

in FL-VL codes. We define the n-th order FL-VL minimax redundancy as

Rp(n) = mf{?nun): L € Xn} . (118)

We now define simlilar quantities for VL-FL codes. A VL-FL code maps
variable-length strings of source outputs into fixed-length binary codewords. The

performance of a VL-FL code is determined by a set I which consists of the

variable-length strings of source outputswhich are encoded. The blocklength

n = Mog|T[1 where || is the cardinality of the set I' and [4] represents

R
' _ ' of a VL-FL code is the length of the codewords and is denoted by n. So
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the smallest integer not less than a. Since I completely specifies
the code we refer to [ as the code. Let £(x) be the number of letters

in the string x. The rate of a VL-FL code T applied to a source 6 is

R,T,0) = nify )17 (119)
where
I8 T p i (120)
xX€ET :

1s the expected length of the input strings. We may define a lower bound

on the rate of this code as

@0 = - T @l p® M7 (121)
.3

So X([I',0) is the entropy of the set of strings x € I' divided by the expected

length of these strings. The redundancy of the code ' is defined as

r (C,8) =R (T,0) - ¥(,0) (122)
and the maximum redundancy is

£ (r) = sup{r (,0): 0 € A} . ‘. (123)

If’K: is the set of all VL-FL codes of blocklength n then define
R,(m) = tnf{Z @): T €X] . (124)

For thedefinitions (113)=(124) it is assumed that each source 6 € A is
stationary. A unifilar Markov source is stationary only if it is in {ts

steady-state distribution. We do not wish to assume that the sources are

in their steady-state distributions since we are interested in applying these




codes to sources with slowly varying probabilities Py For this reason

the codes which we construct are universal with respect to the initial
state of the source.

Let © be a unifilar Markov source with alphabet A = {1,2,...,J} and a set
of states o = {1,2,...,S}. The properties of the source § are given by an

initial state s, and a pair of J X S matrices Pe = [pe(xls)} and Fe*-[fa(x,s)}

0
where pe(xls) is the probability that letter x is output when the source is
in state s, and f.e (x,8) 1s the state into which the source moves following
this event. The probability of a string x = (xl,...,xk) which starts with

the first output letter is

k
@ = M - NCHEIRY (125)
where
8, = fa(x; 158, ) - (126)

Ifg-@mrn”%*)&m

S & k

pe(&) = I Pe(jlm’so) it pe(xmﬂlsi'.-l)
j=1 i=]1
*
where Pe(jlm,so) is the probability of being in state j after m steps
if the initfal state is 80» 36 = j, and si = f(xm+1-1,si_1), i=1,...,k-1.
We assume that A is the class of all unifilar sources with a given

alphabet A, state space o/, and transition matrix FB' (So F914 the same for
all 8 € A.) A source 8 € A 1is then specified by an initial state 5% and
a transition probability matrix Pe. The sources in A are not stationary but
the quantities defined in (113)-(116) are valid if we assume that x =

(xl,...,xn) is the first block of n source outputs so that pe(i) is given

by (125) and (126).
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For VL-FL codes there are other difficulties. First X(,0) depends on

the code I', so the code with the smallest redundancy rn(r,e) does not
necessarily have the lowest rate an(r,e). For memoryless sources ¥ (I',0) is
the entropy of the source, so it is independent of I'. This is not the case

for unifilar Markov sources. 1In fact, even if a source is in its steady

et m——A——————

state distribution before the first string of source outputs is encoded, it
need not be afterwards. The VL-FL code induces a distribution on the states.
However, we may show that the lower bound of (121) is independent of I' in the
following sense.
‘Let {91, i=1,2,...,5} be a set of sources in A with transition proba-
bilities pei = Py such that 61 has initial state i. Suppose that some set of
S codes with encoding sets I‘i achieves K(Pi,ei) i=1,...,S. Then from the Kraft

inequality and the fact that for any ¢ € A
“Zpg (x)1log py(x) 2 -Ipy (x)1og Py (x)
i i i

with equality if and only if pei x) = pcp(-’s)’ the length of the codeword

for x € 1'1 must be -log pei(g). (Note that this set of codes is

VL-VL.) Now if we wish to determine the total length ~f the codewords vsed

to encode a block z of m consecutive outputs with this set of codes the

problem is that the end of the block z may be in the middle of an encoded

string. However, due to the structure of the codes this problem may be re-

solved by dividing codewords. Supi)ose that one encoded string x has k letters 1
within z and £(x)-k outside z. The length of the codeword for x is

-log Py (x) and since
i

v e



-
.

£(x)
Py, @ = jr-ll Py (%418, (127)
k £(x)
= 351 Pg (leaj_l)j_‘tli+1 Py (x4l8 1), (128)

k
the part of the codeword due to letters within z is -log II Py (lesj-l)’
=1

independently of the following symbols. So the (not necessarily integer)

number of bits used to encode z with initial state s, is

0

h|
- log py &Dls

) = -log py(2) 129
120 i e(_ (129)

where z is encoded as 5(1),5(2),...,5(3) (g(j) is not necessarily an entire
encoded string), and pe(gls) is the probability of x for source es. The

expected rate of this set of codes is

-m , 2 K pe(glso)log pe(giso) = Hm(ej) (130)

where Gj = (pe,so). So a set of codes which achieves y(ri,ei) for all
initial states achieves the m-th order entropy given any initial state.

1f we have a VL-FL code P* such that
R (C,8,) SXK@T,8,) + 131
a0 28) SKET,8,) + ¢ (131)

where ¢ is independent of 1, then the expected rate of this code over m

outputs 1is

Rm(e

PSHE) +e (132)




+
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from (130) since ¢ is simply an extra per letter redundancy. So given
the bound of (131) which depends on the set I‘* we may derive a performance
bound (132) which is independent of I'".

If a sequence of codes I' n is minimax universal then from (132) and the
fact that A contains sources with all possible Pe and initial states 84

the rate of these codes approaches the m-th order entropy 1f we average as

above. So if a VL-FL code I has

fn(r‘) =g (133)
and a FL-VI: code L;, has

r»ﬁ(!»ﬁ) =¢ (134)

then the two codes have approximately the same rate when averaged over a
block of source outputs. A FL-VL code and a VL~FL code with the same

mumber of codewords (due to the lack of structure in the codes the number of
codewords is a good measure of complexity) have blocklengths n and nlogJ
respectively. So if we wish to compare codes of the same complexity,

then we should compare the performance of a blocklength n FL-VL code to that
of a blocklength nlogJ VL-FL code.

In [14] a delay parameter d* is defined by d* = n for FL-VL codes and by
d* = tnf(f, @): 8 € A (135)

for a VL-FL code I'. The minimax redundancy, denoted ﬁF(d) and ﬁv(d) for
FL-VL and VL-FL codes respectively, is defined as the minimum of f'n(t n)
or ?n(l") over all codes whose delay d* does not exceed d. This may seem

somewhat unnatural, but the number of codewords is approximately the same
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for all codes with delay d*, so this approach leads to the same comparison
as that mentioned above. We show this as follows. First since d* =n

for FL-VL codes we have

Rp(n) = Ryp(n) . (136)

However, Rv(n) and Rv(n(log.l)-l) are not quite the same. Any blocklength n

VL~-FL code I‘n satisfies
d* < n(logy)! (137)

»*
if A includes the source 8 which has all letters equiprobable in all

states. This is because the entropy of 6* is logJ. So we have

Ry(a) = R (allogs]™) . (138)
Further, if 1": achieves a minimax redundancy Rv(n) then

I, 2 alK@,,0) +Ry @17 (139)

80

a > n([logJ + Rv(n)]'l
This implies

Ry(n) S R (allogd + R (m17Y) . (140)
Since Rv(n) is O(n-llog n), we have

Ry(n) ~ Ry (allog3]"h) . (161)

So any bound on RV may be used to derive a bound on ﬁ.v
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There are a number of papers with results on the minimax redundancy of
FL-VL codes. In {15] and (16] asymptotic upper and lower bounds are derived

for unifilar Markov sources which show
-1 -1
RF(n) =%n (J-1)S logn+0(n 7) . (142)

These results are only asymptotic, however, as the O(n'l) term is not

evaluated. An upper bound

1

Ro(@) < & a"1(3-1)S log n + Kn~ (143)

is derived in [12] and the constant K is given explicitly. For memoryless

sources a lower bound is derived in [5] which shows that

Re(n) = & n-}(3-1)log n -~ K'n"! . (144)

Again the constant K' is determined.
There are fewer results for VL-FL codes. Lawrence [17] derives a

universal VL-FL coding technique for binary memoryless sources which has

:a)s n ! log n+ Kkl . (145)

(This bound, however, does not appear in the paper.) In [14] results of

Khodak are mentioned which state that
-1
Rv(n) = 0(n "log n) (146)
for memoryless sources. In the next section we show that
1

Ry(n) S (log Do Yk s(I-1) +1110g n + Kn" (147)

for unifilar Markov sources.

NERIUPISIPS
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2.2. Universal VL-FL Code Construction

Firat we introduce the optimal VL-FL coding procedure (Tunstall's
algorithm {18]) for memoryless sources. Let 6 be a discrete memoryless
source with alphabet A = {1,2,...,J} and let P (x) = P{X=x}, x € A be the
probability that the letter x is output. A VL~FL code maps a variable number
of source outputs into a fixed number of code symbols from an alphabet C. We
will assume that C={0,1}, 1.e., that the code is binary. Tunstall's algorithm
generates a rooted tree whose terminal nodes (leaves) correspond to code-
words. There are J branches leaving each non-terminal node, and these
branches are labelled with the J source symbols. The encoding procedure
consists of starting at the root node and traversing after each source
output the branch with the corresponding label. When a leaf is reached,
the codeword assigned to that leaf is sent and the procedure is
repeated. So each leaf corresponds to a unizée string 5-(x1,...,xk) of
source outputs and has probability pe(i) = 121 pe(xi). The algorithm
generates a larger optimal tree from a smaller one by adding J branches
to the tree at the leaf with the highest probability. So the highest
probability leaf is divided into a set of J leaves. It is easily seen that
the ratio of the lowest probability leaf in the tree to be highest is not
less than o & min{pe(x): x €2}.

In Figure 6 this procedure is illustrated for a binary memoryless
source with p(l) = .7 and n = 2 (4 leaves). The encoding tree is formed in
three steps with the most probable leaf being extended at each step. Each

of the final set of input strings I' is assigned a codeword of length 2.
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Construction of a Tunstall code with blocklength 2 for a
binary memoryless source with p(l) = .7.
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We now extend this algorithm to coding for unifilar Markov sources.

Bervmin §
]

A VL-FL code for a unifilar Markov source 8 is generated using an algorithm

1

much like that for memoryless sources except that now each node of the tree

[ T

has a state associated with 1t. The probabilities associated with the

[ T ]

branches are given by p, (x|s) where x is the output letter which labels the

branch and s is the state of the node which the branch fs leaving. The
i, algot:lthm again consists of extending the most probable node, where this
I probability 1is now given by the product of the transition probabilities of

the branches traversed in reaching the node. It is not clear that this

L algorithm is optimal since in general to actually encode some block of source
{, outputs S encoding trees are necessary, each designed for P9 and Fe but for
- different initial states. The structure of each of these § trees determines
}' the probability of being in a particular state after encoding a string of

source outputs, hence the probability that a particular tree is used is

} affected by the structure of all § trees. It is not necessarily true that

generating these trees independently (as is done here) is the optimal encoding
algorithm. However, the algorithm does yleld code trees which have
asymptotically good performance as will be seen later. Further, in each tree
the ratio of the minimum probability leaf to the maximum is not less than

[19]

as= mi.n(pe(x‘s).; x€ A, 8€0) . (148)

We use the Tunstall algorithm for individual unifilar Markov sources

to construct a universal code for a class A of sources as follows. Let
- [cpt; 1= 1,...,ym] be a finite subset of A such that 1f € §_, then

there is a source ¢ 5 €3 a with initial Jtate j which has the same transition proba-

1)

bility matrixas @, for j=1,2,...,5. Let rn

be the encoding set of a blocklength
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m code designed for the i-th source Py € 'm‘ The codes l‘: are constructed
using Tunstall's algorithm as above. The universal code I‘: is defined as
follows (n is defined in terms of m in (150) below). A string x is an

% i
element of I"n if x € l‘é ) for some { and (x * y) ¢ l"(‘j) for any § = 1,2,..., o’
where y is a non-empty string of source letters (* represents concatenation).

So the tree for 1": contains all nodes from the trees for l"f'), is= 1,2....,7".

Now

Y,
%* m (1)) . ol
Irl=s 20 rg| = ve2 (149)
i=1
8o the strings in l":: may be encoded into codewords of length
n<m+ rlogyn:l . (150)
The rate of this code 1": when applied to a source 6 is
* - * . =1
Ry(8) = aly )] (151)

< [m + Mogy] uie(r‘fl“’)]‘l (152)

for any k = 1,2,...,ym. This follows because by its construction the

expected length of the sequences in r: must be at least that of any of
@)
I‘m

the sets . There are two sources of redundancy in (152) which we must
bound in order to bound the redundancy of the code 1":. The first is the
llog ¥ term which is due to the fact that |r:| may be as large as v 2".

The second factor is the difference between
- i
wax{f, @) 1= 1,0y ) (153)

and Ie (f‘m), where 'f‘m is the Tunstall code designed for source 6. So the

second factor is derived from the mismatch between the actual source 8 and




the source for which the code I‘S') was designed (that source being some
% €? ln). As Yo increases the effect of the first factor increases and

that of the second decreases. Blumer [13] shows that for

P fmed g ey

{

log Yo = %¥S(I-1)log m + K (154)

| T
®

where K does not depend on m, a set § n D&Y be constructed such that

e oy

max{min{i_(059,): 1 = 1,2,...,y.}: 6 € A} < al . (155)

(Here JCr(S;:p) is the entropy of source 8 relative to source 9.) We use
P this result to bound the effect of the mismatch. The details of the

derivation are in Appendix B. The final result is

4
M .

i‘-n(r:) < n! log J(log n + & S(J-1)log n] + xln‘l (156)

[
. .

for n > Kz(log u)2 where Kl and l<2 are constants independent of n and ©
i given in Appendix B, equations (B.34) and (B.35). So the code is minimax
universal.
As previously discussed, we wish to compare the performance of a
| blocklength n VL-FL code to that of a blocklength n[log J]"]' FL-VL code
- : (these codes have the same number of codewords). For FL-VL codes (143)

[ . gives

1

SR l Ry (nl 10 1171 < 0! 1og J(k S(I-1)1og n] + Kn" (157)

and (156) implies

1

R (n) S n"! log J(log n + % 5(J-1)log n] + Kln-]'
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80 we see that the leading term in the redundancy bounds is the same except
for a log n term which appears in the VL-FL bound. This additional term
is present because there is no known bound on the redundancy of a Tunstall
code which remains finite as the minimum letter probability of the source
approaches zero. 1I1f the sources have all letter probabilities greater than
some ¢ > 0, then the log n term is replaced by log 3-1.

Further 1f A is the class of binary memoryless sources (so S = 1 and

A= [0,1]),then the log n term may be eliminated. The final result for

© this case is

Ry <%¥nl logn+Rpn " . (159)

The derivation of this result appears in Appendix B.
2.3. Performance Evaluation for Binary Memoryless Sources

In this section we conmstruct VL-FL codes for the class of binary
memoryless sources using the method presented in Section 2.2, and compare
their performance to the performance of the FL-VL codes constructed in [1l}.
One modification to the basic code construction is given, and the performance
of codes obtained from this modification is evaluated. Here J = 2 so
n log J = n and we must compare VL-FL codes to FL-VL codes of the same
blocklengths.

One difficulty which arises in designing a VL-FL code of blocklength
n is that we do not know apriori the cardinality of Fz for a givea m. We
only have the upper bound of (149). So to actually construct a blocklength
n VL-FL code we use the following iterative procedure. We choose an initial

number N of codewords for the Tunstall codes Fii) which are designed for
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sources in ¥ n (here m e log N 1s not necessarily an integer). We then

*
combine these codes into a single code I' (N). We iterate this procedure

to find

¥ & max {N: P Q0] <2 . (160)

So N 1{s the maximum number of codewords in the Tunstall codes I‘g') such

that the combined code has blocklength n. Then we set

r: = '® . (161)

I1f we let the parameter & for a binary memoryless source be the probability of
a one, then the class of binary memoryless sources is the interval [0,l1].
Because A is one-dimensional we may easily determine the optimum design

point set Qm for any Yo' These sets are given for some values of Yo in

Table 1 of [11] and may be determined for other Yo using the technique

described there. Codes of blocklengths 5, 8, and 10 were constructed using

these sets ’m' A graph of the redundancy of these codes is given in Figure 7.

The curves are symmetric about 6 = .5. In Table 1 the maximum redundancies

are compared to those of the FL-VL codes of {11]. We see that VL-FL codes

have significantly better performance for blocklengths 8 and 10, and only

slightly worse for blocklength 5. In Figure 8 we have graphed the

redundancy of blocklength 8 and 10 VL-FL codes together with FL-VL codes of

the same blocklengths. The VL-FL codes have lower redundancy for almost all

values of 6. The largest difference occurs at § = 0 or 1. The reason for this

is that in any universal FL-VL code the codewords for the all zeros and all

ones output blocks must have length at least two, hence the redundancy at

® = 0 or 1 must be at least 2n L.
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n VL-FL FL-VL
5 409 .400
8 .16u .250
10 .139 .200

Table 1. ilaximuu redundancies for VL-FL and FL-VL codes of olocklengtas
n=5, 8, and 10.
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The lack of structure in these codes typically requires a table
lookup scheme for decoding, so their complexity increases as 2“, the total
number of codewords. This limits n, and thus the achievable redundancy is
also limited. To alleviate the problem of complexity we may adopt the
following modified procedure. We design Tunstall codes T:}) of blocklength m
for the sources ¢j € Qm. Instead of combining these codes we leave them as
separate "subcodes". Then we encode the source outputs (xo,xl,...) as
follows. Each subcode encodes k strings from the source output. We use
the subcode which has the lowest rate for this set of k strings, i.e., the
one which encodes the largest number of source outputs. The codeword for
this set of k strings is the concatenation of a prefix of length riog Yﬁ]
which identifies the subcode we are using with the k codewords for the encoded
strings from that subcode. The total number of codewords for this procedure is
ymZm. The resultant blocklength is approximately km and would require about
Ym?km codewords in the original coding procedure. So the complexity of this
blocklength km code is approximately that of the blocklength m code previously
considered. The reason that this new code performs better than a blocklength m
code is that the redundancy due to combining the codes Féi) is of order
m-llog m, whereas the other terms in the redundancy are of order m-l. with
the new procedure these terms are (km)-llog m and m-1 respectively so that
the dominant term is reduced with respect to the other terms.

A similar technique is used in [1l] for longer blocklengths. A
special code {s used there for source with 8 near 0 or 1, but the complexity

remains about the same. In Table 2 we give the maximum redundancies of VL-FL

codes of blocklengths 50, 80, and 100 which are constructed by encoding 10
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n VL-FL FL-VL
50 LT .080
80 .065 .@50

100 .053 .050

Table 2. ifaxiaum redundancies for VL-FL and FL-VL codes of blocklengtns
n=50, 80, and 100.
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strings with VL-FL subcodes at blocklengths 5, 8, and 10. Results from
{11] for the same blocklengths are included for comparison. The FL-VL

codes perform a little better, but there is no great difference.
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CHAPTER 3

UNIVERSAL CODING FOR REAL-VALUED SOURCES

3.1 Introduction

Here we consider source coding for discrete-time real-valued sources.
The source output for the i-th time interval is a real random variable Xi.
In contrast with the previous chapter, the entropy of these sources is
generally infinite, so noiseless source coding is not possible. The problem
here is one in rate-distortion theory, so the goal 1is to find a code with
low distortion for a given rate. We assume that we have a distortion

measure dn(gtz) for each positive integer n, where x and y are elements

of nf’, and that there is a maximum distortion D < * such that
~1 = n
n"d(xy <D xy€R (162)

for all n. There are a number of papers on coding techniques for known
sources of this type, e.g., [25], [28], and [29]. For some specific classes
of sources we show how a code for an entire class may be constructed using

a coding technique for single sources in A, We show that asymptotically

this code performs as well on any source § € A as a code designed specifically

for that source.

The codes which we consider are fixed rate; that is, all codewords have
the same length. The codes consist of vector quantization followed by a

mapping of the quantizer outputs into fixed length binary sequences. A block-

length n M-point vector quantizer is a mapping fn: R® + A vhere A =

{a,: i=1,...,M} is a finite set with elements in R®. The elements of A

4
are called output levels. The distortion which results when the outputs of

a given source 8 are quantized is defined as
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D(30) = n " 4 (X,£, ()] (163)

where dn(o,-) is the distortion measure and X = (xl,...,xn). The rate of

quantizer fn for source 0 is defined as

1r -
R(£30) =< log M . (164)

For our purposes a code is determined by its associated quantizer fn’ 80
we refer to the code as fn' Then the rate and distortion of the code f

wvhen applied to source 0 are defined by (164) and (163) respectively.

We assume that we have a coding technique for sources in a class A.

So for any source & € A we may construct a blocklength n code fz with M

output levels. For a given blocklength n and rate R let 6n R(0) be the
?

distortion achieved by fi‘ We assume that
8
5,80 = D(£30) < D(f'g,a) (165)

for 0,9 € A. So when applied to source 8, fi performs at least as well as
a code designed for gome other source in A, The coding technique here
does not necessarily yield optimal codes; that is, Sn’R(ﬂ) need not approach
the distortion-rate function D(R) for source § as n + *, For example, these
codes may be derived from locally optimal quantizers (designed using the
algorithm of {25]) or from optimal one~dimensional quantizers [29].

For some specific classes A we show that given 'a coding technique we
may construct a sequence of codes of increasing blocklength f;,f;.... such

that

*
D(£:0) - 8 L(8) 0

and

R(£:;0) >R (166)

cT " .
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uniformly on A as n + =, We call such a sequence of codes minimax universal

with respect to the coding technique which yields Gn R(O). It is important
9
to note that Gn RQ) is the distortion achieved by many different codes,
*
each designed for a particular § € A, In contrast to this, D(fn;-) is the

distortion of a single code over the class A.

fani e  fuuni Pual Dy

First we consider classes of memoryless sources. A general result is

Sttnn g
. 1

derived for classes which are twice-differentiable with respect to their
i ‘ ( paramters &, This result is in terms of an integral which is evaluated for

some specific classes. For all of these classes the result is that

! * -1
[ D(£,30) = 8, p(6) < Kjn

1

%* - -
R(£,56) ~ R< kn " log n + Kjn 1 (167)

where k is the dimension of A and K1 and K2 are constants. We then show
that a result of the same form holds for k-th order Gaussian autoregressive

sources. These codes give upper bounds on the additional rate and distor-

—

tion incurred when coding for a class A rather than a specific source
8 €A, .

An outline of the code constructior and bounding of performance is as
follows. For each integer n we have a finite subset ¢h of sources in A,
Codes for each source in ¢n are constructed. These codes are then combined
into a single code by adding a prefix to each codeword which identifies the
source in ¢n for which the code is designed. The rate of the resultant
code is greater than the rate of the individual codes because of this prefix.
The code has low distortion for the sources in ¢n but may not for sources

which are not in ¢h’ As the number of sources in ¢n increases, the additional
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rate increases and the distortion decreases. The first result bounds the
mismatch distortion, i.e., the distortion which results when a code
designed for ome source is applied to another, in terms of the entropy

of one source relative to the other. Next we show that if the relative
entropy may be bounded then we may pick ﬁn to give a minimax universal
code. The relative entropy is then bounded for some classes of memoryless

sources and finally for Gaussian autoregressive sources.

3.2 Code Construction
£
n

We design codes of blocklength n and rate R for sources vy € Qh.
where ¢n = {wiz i-l,...,?n} is a subset of A. These codes take n-tuples oé
source outputs into codewords of length r-log ﬁj , where M is the number of
levels in the associated vector quantizer. These Ta codes are then combined

by adding a rlog 1;1-bit prefix to each codeword. We denote this combined

code f:. We know

(e 5000 = 8, 260 (168)

where R = n_1 r-l.og ﬁj . The encoding procedure for f: is as follows. Set
*
£ =t @ (169)

*
for 1 = arg min dn(z,féi)(g)). Then the codeword for f (x) is the codeword
i
for féi)(g) with a prefix attached. So we have

D(f:;a) < min D(f,(li) 03 (170)
i

*
that is, the distortion of fn for a source ¢ is no greater than the distor-
tion for any one of the codes féi) from which it was constructed. The rate

of f; 1s
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R(EN0) = ol log M+ log 7} . a71)
: o Now 1f § = arg min D(fii);O) we have
Lo 1
i
- p(£4:0) - 8, 20 <peP0) - e 0y +0eeM 0y - 8 @) .
‘ . (172)
Let En by the code designed for 6. Now
- p(tM s0,) = 8, ploy) < DCEu0,) (173)

|
{ k. 80 we have

1. D(£30) - 8, ,@) < D 30) - peeT w01 + CE 0 ) - DCEO)I

- (174)

The set ¢n is designed such that the right hand side of (174) may be

-
[Rreny

bounded uniformly for 8 € A, Both of these terms are distortion mismatch

terms, that is, they represent the distortion incurred when a quantizer

sy
1] 1

designed for one source is used for another. The following theorem

———
M '

bounds the distortion mismatch in terms of the relative entropy.
Theorem 3.1. If fn is a code and

W, ®59) +3C (958) = ¢ (175)
then

Ice_;0) - D so)| < g¥ 5e2 10g &) 7 (176)

vwhere Kiﬁe;q) is the n-th order entropy of 6 relative to ¢ {30],

D.
™ (B ) ]’ am

K (@;9) 4 -upiz kg (By)1og ——==
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e fpany

vhere the supremum is over all finite part. 7ns {31] of BT and g (B) 1s

the probability that the source output X € l{a is in B for source 0.

Proof. See Appendix C.

Now suppose that A is a compact subset of Bk. The following

i e

corollary bounds the rate and distortion of a universal code using

o

Theorem 3.1, For 8 = (91,...,9k) and § = “1"“"\:) we define the norm

[P
. v

o -4l = max{fe, -v,{:1s 1<k} . (178)

Corollary 3.1. If |6 -4| < ot implies 3C (8;¢) = %2 for 0,4 € A then a code

f: may be constructed such that

\ ID(£2:0) =5, o ®)| < 05K (10g &)™ 179)
* and

. <1 k -1

{ R(£%;8) -R < n " [k log n+1+ I log(s;+n )], (180)
. t=1

for all & € A where

r 8,8 max o -y, ] stk (181)
: 0,4 €A

- is the maximum difference in the i-th components of § and § for any

‘- 8,4y € A.

Proof. We cover A with cubes of size n-l, and then let Qn congist of one

source from each of these cubes. There are at most

k
1nlr:.in" (182)

such cubes which gives (180) and clearly for any 8 € A there exists a source

SR

l o € - such that |8 -gf| < n.1 so (179) follows from Theorem 3.1.
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Let A be a class of memoryless sources. Since A is a subset of lk

a source § € A is specified by k parameters {01,1-1,...,1\'.}, 01 € R, and

we write 0 = {01,...,0k}. If 0 has a demsity Py» then we assume that

is 3

Py aei"e
and

13§ —— 2.

Py aeia,aj

exist for all 1,§ = 1,...,k. For memoryless sources

n

80

¥, O30) =3 @s0) .
For such sources we have the following theorem.

Theorem 3.2. If ||0-¢|| < ¢ then

¥, 059) < k2K 2
where
- Py (x) p)(x)
K = (log e) sup {J—-——p;'(T-d
R
for A € RE,

Proof. This follows directly from Taylor's formula.

Py (X)

Ko@) = [ opg @08 5 75 o

We know [30]

(183)

(184)

(185)

x: 9 €A, 1,] -1,...,!:} (186)
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(192)

=
]
rJ%J“

Next consider a class of mixture distributions. Let {qi: i=1,...,k+l} be

a get of distributions on IR. Then define AC m“ by

k+l "
A= 8:p (x)= £ 9,q(x), 8, ¢, I=1,...,k} . {193)
{=1 1 ]
Since
-] i
5 Py (X) = q 7 (x)
aei 8
and
i
q (x) 1 1
IO
we have
K*<%-. (194)

Finally, consider the case where A is a compact set of k-th order
Gausgian autoregressive sources [30]. We assume here that dn(-,') is the
minimum of nD and the r-th power of the Euclidean distrance. We also

assume that if f:(§) = a, then
d (x,0,) < d (x,0,) 3 3= 1,2,...,M. (195)

This means that each source output is mapped to the closest output level
by the quantizer, which is a necessary condition for a quantizer to be
optimal. In a Gaussian autoregressive source the output is generated by

adding a Gaussian r.v. to a weighted sum of the previous outputs. So the

j=th output is given by
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3 3 : §_x
O;9) X (0;0) + Z (0, -V, ) 7 X (0;9)
1 1 qm3 1 1780, 1 omd
kK k P " )
+Z I (0,-v)0,-v,)su G X (ww') : WE A},
{e] j=1 i 1Y) 3 Gaa 6«3 1 PR
(187)
Now .'rCl(O 30) = 0 and
é i
33—-Ri(0;¢) ' = [ Py (x)dx = 0 (188)
i y=8 R
So the theorem follows from
i ]
3 5 , \ Pw(x) Pw(x)
T ‘5"5;'3(1\“,@ Za'-w (log e)[ —-Tw-(;)-—- dx . (189)

R

1f K* is finite for a class A then the hypothesis of Corollary 3.1 is
true and the code is minimax universal. The performance of this code is
given by (179) and (180) with K = kZK*. If A is the class of Gaussian
distributions with mean p € [”1’"2] and variance 02 € [oi,ogl s 0y > 0, then

k, the dimension of A, is 2, and computation of the integral gives

K" = max {1,20I2} (190)

For the case where A is the class of exponential distributions with mean

g8 € [81,62] s By > 0, we have k=l and

(191)

More generally, if A is the class of gamma distributions with a > 0 fixed

and B € [51,82] , then




L .

X, =-L a,X,_,+2 (196)
I_ S I o I
* where Zj ~on(0,oz) are independent. We agsume that the sources are

2 2
asymptotically stationary and that 02 € [cl,azl. This is guaranteed if

the zeros of

1

‘ - -k
H a(\) = 1+317\ +ootann

have magnitudes less than one. In vector form (196) becomes

- 197
2, ~YE L, (197)

T T
where -}Sj = (xj,xj_l,...,xj_k_._l) ’ 3-,1 = (Zj,O,...,O) , and

[V
.

1 0. (198)

So the roots of a(\) are the eigenvalues of y. A source § € A is determined

[Ise——Y
.

by (al,...,ak) and c2 80 we write 6 = (al,...,ak,crz). Each 6 € A must have

R rm———
" '

# 0; otherwise, it is not a k-th order autoregressive source.
%

The design procedure and the derivation of performance bounds are a

[y
L ] )

little different here because the initial state of the source (0.4 1,...,X_k)

is an 1ssue. As in previous chapters we want the universal code to perform
well for all initial states. Here however the initial state may lie
anywhere in Rk so this is not possible. We must assume that the initial
state lies in a compact subset of Rk. Specifically we assume that

|x_j| S{<ofor § =1,...,k. To construct the universal code we design
codes for various sources in A but only for a single fixed initial state

50 =0 é (0,0,...,0). We first consider how a code designed for source ¢

with ;50 = 0 performs when used for source 8. If |6 -qf| < ¢ we have

GH El o) Gunj pang ey

S S e e o
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2 4 2 <2 2
3, (0;0) <% ¢ log e[g, +k'o," o] (199)
where '
2 2
o> & swp lnm EglX: 1. (200)

€A N~ o=
Now ai < » since we assume that A is compact and that the sources in A are
stationary. Details in the derivation of (199) are given in Appendix C.
Given (199) we can bound the rate and distortion of the code as before.
So we have now constructed a universal code for initial state _:50 = 0. We
bound the performance of this code for other initial states as follows.

Given a vector of source outputs X = (Xo,...,xn_l) from a source 8

with initial state 50 = (x_k,...,x_l) we define a vector g by

¥ = - 201

X, =X -y (201)
where

"i & h’iﬂ_z_:_o]l ; 1=0,...,n-1. (202)

The matrix ¥ is as in (198) for & = (al,...,ak,cz), and [_;S]j is the j-th

component of the vector x. Then X has the same distribution as a vector

generated by source & with _:go = 0. So we know

By (4 K E @) Snd_ () +K (203)
where

A I I N

K' =k Djo,” +k" 9,70 1% . (204)

From (195) we have
d (x, £ (X <d (X,f (X (205)
n'='"n -)) n='"n'— ).

Let g* = fn(;g). Then the expected distortion & (unnormalized) is bounded

by
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n-1l x 2 r/2
A< Ee {[1-2-0 (xi-xi) } . (206)

Now from (205)

~% ~ ~ *
X =X <& -%) + & - (£
-1}
n;l x 2 % < n-1 % * 2 % n;l 2 %
(X, -X)) T X -0 XD + K .
A S| mp 2T TR [ 4w

Since the eigenvalues of ¥ are strictly less than one ‘i’i >0 as i+,
So we may bound
n-1

Z
i=0

i < nl (207)

where h does not depend on n or 8. The details of this derivation are

carried out in Appendix C. This gives

n-1 * ~ 2.3 r
A< 1-:e {[(i‘:“o (xi - [fn(g(_) i] )<+ h] } . (208)

Ifr>»1and a,b >0, then
(a+b)F < af + rb(a+b)™ L
which implies
A<nd, L(8) + K +rh(D +m)L (209)

So, the distortion mismatch is bounded by
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T

o

*. -1 [ 4 r-1
|°(fn'°)"n,n(°)| <n [K'+rh@+h)TY

where K' is defined in (204), and from (180)

» -1 k -1 2 42, -1
R(£;0) ~R<n "[(k+l)log n+1+ I log(b, +n ) +10og@, -9 +n )]
n i=1
- where
’
b max |a -4 |
} i 8,9 € A i 1
L using 6 = (a.,... 02) and @ = (& a '2) So th de is mi
' 1’ 285 ] 1"""k“’ . e code is nimax
EA universal. Notice that only O(n-l) terms were added to the rate and
B distortion in going from a fixed initial state to an arbitrary initial
- state in some compact set. Again the additional discortion is O(n-l) and

the dominant term in the additional rate is the number of dimensions of

the class A times n-l log n.

3.3 Generalization to Unbounded Distortion Measures

e

Under certain conditions we may remove the restriction that dn(-,-) i

is at most nﬁ, and still get minimax universal codes. In particular this

[~
-

may be done if dn is a different distortion measure which does not increase
exponentially and if the contribution of high distortion terms to the
expected distortion is small for any® € A.

Let B(w) be a sphere in R" with diameter w and define
ddx-y M =0t d (x,y)
n. - x n—'x

where lI- || 18 the Euclidean norm. If for all® € A we have

J d (I xl) pg (x) dx < £(w) (210)
[B(w)] ©
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where f(w) + 0 as w + @ and in addition
) En«.a)e"" >0 (211)

as w -+ «, then we may construct universal codes as before. We assume
that the quantizer f: has at least one output level in B(w). If this is
not the case we may add one output level to f:. The effect which this
has on the rate is small; M is simply replaced by M+l in (171), so the

dominant term is not affected. To bound the distortion we divide the out-

puts into two sets. For the set [B(w)]c we know that the total expected

distortion is at most f(w). For x € B(w) we have

i a4 (5, @) < () (212)
?' so we may bound the distortion as before using dn(ao in place of D. So
if we set w = log n then the distortion here is bounded by ;
D(f:;O) <! d_(log n) K? (log @)% + £(log n) . (213) q

*
So from (211) is is clear that fn is minimax universal.

) ‘ 1f 3n(u0 does not increase exponentially with w then all classes
considered here (except for the mixture distributions) satisfy (210). For

! example, 1if dn is the r-th power of the Euclidean distance and pa(x) decays

, as e ** then
‘ |
4 f(w) = k oF W
; so that
f(log n) = k n-a(log n)®
and

| E(log n) = (log n)r .
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Then we have
;
v * & -y r
) D(fn,O) - Bn’R(O) ~ Kn “(log n) (215)
- where K 1s a constant. Note that the additional distortion is no longer

O(n-l) in this case.
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APPENDIX A
. PROOFS OF THEOREMS FROM CHAPTER 1
Theorem 1.1. Given any two initial distributions Bo and vp oo [0,11, if

]
’ By and v, are generated from (38) then g

P(yvy) S Mo wgavy) (A.1)
where A & l-a-P.

Proof. The proof is done in three stages. First we assume i, and v, are
concentrated on individual points, then finite sets of points, and finally
we generalize to arbitrary koVo-
Assume that Vo is concentrated on a point z* and Bo is concentrated
. on z*+¢, where z* € [0,1) and ¢ € (0,1-z*]. This gives vo({z*}) =1,

s 3 i u.o({ zk+¢)}) = 1 and E(uo,vo) = ¢, Now let by and vy be the distributions

generated from bo and Vo using (9). So

w [ (£ (2% +€)}] = plk|z*+e) (A.2)

and

vil (£ (z0) )] = p(k|z%) k€a. (a.3)
' Since By and v, are one~dimensional, 5("'1’“15 is given by (5]
1
P(ul,vl) - Io |u1[0.z] ’Vlloaz”dz . (A.4)

So the p-distance is the area between the cumulative distributions for

| Hy and vye We first show that ul[o,z] - v1[0,z] never changes sign. Define

a set B(z,z*)C A by

B(z,z*) @ (k€ A : z2 £,N] . (A.5)
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.. Then we have
{
8 00,2 = T P(k|z¥ +¢)
k € B(z,2* +¢)
L wd
.- ve(0,2) = % pkjz*) .
3_ k € B(z,z*)
N Now £ (z) 1is of the form
; z + bk
£ (z2) = ———0 (A.6)
| k ckz + dk
where "k’bk’ck’ and clk are constants, and its derivative is
ady = e
. £ (z) = —33-———-12‘- @A.7)
{ (ckz + dk>
i so fk(z) is monotonic. From the definition of fk (6) we have
o so ifA 20 fk(z) is increasing, and 1f A S 0 fk(z) is decreasing.
{
I Assume that A > 0. Then
£ (z*+e) 2 £ (z%) (A.9)
-
for all k € A so
B(z,z*+¢) C B(z,z%)
We now show that
] o {p(klz*+¢) - p(k|z®)} < 0 (A.10)
k € B(z2,2z*)
r’
. for all k € A.
R R N s
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Since A 2 0 (A.10) is equivalent to
k€SB

(Here we use B = B(z,z*) for convenience.) If either B or its complement
B¢ 1s empty, then clearly (A.1ll) holds with equality. So we may assume that

both B and B are non-empty. Suppose (A.ll) is false. Then we have

I %M@ < Loy

kKEB
and
T Yok)> T vy,(k) , (A.12)
k€p © kege !
which together imply
T ¥ak) T ¥, kK)> T yuk) I v, (k) . (A.13)
kep® O kep b kep 0 ke !

But 1f K€ B and J € B® then
fj(z*) > fk(z*) (A.14)

(recall B = B(z,2*)). So we have

J k %*
1*1‘”"1(‘ ) lvl( M, (%)
L ¥, (I, (z%) vy, k)M, (z*)

gm0 I " =0 1 M

(A.15)

which implies

¥, (DY) > v, (YD) (A.16)
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, ) 1f we sum both sides of (A.16) over all pairs (k,3j) such that k € B and

!. j€ B® we have
| I v L Y@z T v, T ¥, . A.17)
- jep* 1l kesp?® kes 1 jep?©
i’ But this contradicts (A.13), hence (A.l1ll) must be true.
T So we have ‘
i
‘ 00,21 = E p(k|z* +e¢)
k € B(z,z*+¢)
< T p(k|z* +¢)
k € B(z,z*)
. ; s T pk|z*)
: ; k € B(z,z*)
g | | = v,[0,2] - (A.18)
& ; for all z € {0,1] as desired.
18 . For A < 0 we have
B(z,2*) € B(z,z2* +¢) (A.19)

and since (A.1l) still holds, it follows that

s

-] T (p(k|z*+¢) - p(k|z*)] 2 0 (A.20)
k € B(z,2z*)
l so in this case
[' b,[0,2] 2 v [0,2]  ; Yz € [0,1] . (A.21)
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In either case the absolute value in the definition of the p-distance
(A.4) may be taken outside the integral, hence we have

1
5(“1:V1) - |Iotu1[°»zl - VI[O,Zl}dZ‘ . (A.22)
Now

1
Iotl - pl[O?z]]dz

is the expected value of z under by SO

Shyvp) = | % Gl rofarre) - plklzng, @l J

L oy, (% +e) = 1y(z%)]
‘k €A 1 1 1 |

Ixe

A le Gagavg) - (A.23)

1f ko and v are concentrated on a finite set of points the result
generalizes as follows. Let ® be the class of distributions on [0,1] which
are concentrated on a finite set of points. Let a* be the joint distribution
which achieves E(uo,vo). (Since bo and v are one-dimensional a* is easily
determined.) Now a* is also concentrated on a finite number of points, say N,

N
so for some set {(xi’yi)]i-l we have

ok ({ (x;,y,)}) =8, 20 (A.24)

N
and 121 9i = 1. Define probability measures uéi), vgi) and agi), i=1,2,...,N
by -

i (ix, 1) =1
vgi)({yi}) =1

asi)({(xi,yi)}) =1,

asinmsalitesntutinn

——— v
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Then let u(i) and v(i) be generated using (9). Let a(i) be the joint
1 1 (1) (1) Lo @) (W
distribution with marginals Ky and vy which achieves p(ul vy ).
For each i (10) and (A.23) imply
E (1)[|x-y|] < M elx, -y, (A.26)
|
since péi) and véi) are concentrated on single points. Further
b o)
@y z efal is a joint distribution with marginals by and Vys hence
i=1
- N
plsyvy) SE, []x=y|) = T E )[|x-y]]
1 i=1 o
Z 0y lal-lxy,]
= F o, Ialelx, ~y
(=1 i i1
= [AEWllx=y]]
= |Alp Gugovg) - (A.27)

Now consider arbitrary distributions Mo and vg,. Define a sequence of

distributions ug for N = 1,2,... by

wdi0,x] = a7t 1£ p0,x] € (-LNTLINTH 5 g =1,
Then

- N 1 N
p (Bgrg) = j’o |ig[0sx] = uy[0,x] | dx

N xj N
= £ [7 |uglo,x] -pgl0,x]]dx
=1 xj-l

1

N x
<z [ |t genntax - N
3-1

i=1 "x
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vhere x, 1s such that uh[0,x] S JN© for x < x, and uh(0,x] > yu’

J 3

for x > xj .
Now 1f by and y.!; are generated from bo and p.g using (9) we have

W) -uytoxl| = | £ [ ) P|2) Gga) ~ug@a))| . (a.28)

iea £

1 ([0,x])

Since £, is monotonic f;l(lo,x]) is an interval, say [v;,y,], and using

integration by parts
y y
I oo hdz) -ug@e)) =p(t|2) (310,21 - pgto,2D|
1 ¥
y
+ [ @pl0,2] - ugl0,21p" (1 2)dz .
Y1
Now & p(t]2) = Ay, (1) - ¥, (1)1 S 1 80

Y

[ tp(1]2) gy dz)) S wgl0,wy ] =ugl0,w, 1 +ugl0,y, ] ~ugl0,y,]
w

i

Y.
+ [HR10,21 - ugl0,2])dz
Y1

< o8t

- N
+ P(P'osﬂo)
< w'l,

It follows from (A.28) that

wY10,%1 -, 10,x1] < 87"

so
1

p (u’{.u.l) s[ on"lax = on71 . (A.29)
0
N - N -1
If we define V1 similarly we have p (\,1,\;1) < 6N °. We know

;(ﬂ?_o\)t{) s |)\|a(ﬂg:\)g)

b e 0, B g n - i
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i— so by the triangle inequality,
] - - NN -1
- p(p,l,vl) < ll‘P (Po:\)o) + 12N
L ) N
< |A|lp (wgove) *+ 2N 7] + 12N
5
3 1
< Mo Ggovg) + WN . (a.30)
‘ Since (A.30) holds for all N we have
Plhyavy) < AP Ggive)
? for arbitrary distributions ";0’\’0 on [0,1].
: Theorem l.4.
a~ A i A i ~ 1 1 ~
Fy(2gs2y) = x% Ailzi(§ ) =2, GIPE |zp) = |A] *|zg - 24] (A.31)

where zi(gi) and 'z'i(gi) are derived from initial estimates z, and 20 using
the recursion (6) i times.

Proof. We will use induction on 4. For i = 1
Fy(zy,2) = 5 é; A‘fj(zo) - fj(ao)lp(ﬂzo) (A.32)

where fj and p(j|+) are as defined in (6) and (8). Assume A(z;-£2;) 2 0.
‘ Then fj(zo) 2 fj(?:o) 80 we may remove the absolute value brackets in (A.32).

Now I f j(io)p(j'zo) i3 the expected value of a distribution which assigns
JEA

probability p(j|zo) to the point fj(io); § € A. Let (i be the probability

weasure for this dist‘ribucion. The: s
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Bo,21 = = pUlzp
j€ B(z,zo)

290,218 £, pUlEy
3 € B(z,2p

where n(z,io) is as defined in (A.5) and the inequality follows from (A.20).

Next

1
j'o v[0,z]dz = ; é: Afj(zo)P(jlzo)

-1+

Fy (zgs2g) < ) z A[fj(zomulio)l
= |n(zg~2p)]| - (A.33)

The same result follows if k(zo- 20) < 0 using corresponding inequalities.

So the result holds for i = 1,

Now we assume Fj(zo,io) < |}\|j-|zo-£0| for j<i. Then

i+1

A i+1 o ~ 1+1
Fie1(200%0) = Eﬂlziﬂ(z )-£ @ &z

=2 J)zI |f

' ~p i
SR EE 8, M) |p(xyyg 2y &) Bl |7
i1x i+l i+l
_x_ i+1 ‘
1 ]
sz |al-lg @ -£, D& |z (A.34) ‘
i .
p .4

- |)\| 'Fi(zoszo)

i+l
< Al |z°-2°|

wvhere (A.34) follows from (A.33).
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Theorem 1.5. If 6, o € A'(5) then
A RE AN RN COl O BN
i -1
< Igl™ +r11-13g1d (A.35)
where
K 857%3¢ +3¢2+ &3] + ¢, (A.36)

3(51\20) is the probability that Ei is output from source 6 if the initial

estimate is Zgs and )‘8 4 l-a-B.

Proof. First by (6), (8), and (54)

;n "
I8y @l Sl—the . L] 4
10731 My +y0

-2 - ~
s 6 Iﬂjlﬂjo-ﬂjlﬂjol +e€ (A.37)

where T, = v, ()7, () end ﬁij 1s defined as 1, using the parameters for
source @. Next, if we define

K=({(Q-B)z+a(l-2z)]«[B'z2+(1~a')(l-2)]
and

K'= (z+ Q-a)(1-2)]e{(1-8)'z2+a'(1-2)]

then  K-R'Se. So stnce T, 0 = v)(DYH(DK and N300 = Y1 (H¥UIK!
we have
My1f0 =T yaMyol S 1GEU) +6) (o) +e) R +) = ¥] (Dyp (DK |

< 3e+3el+¢) . (A.38)
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So we have fj(z)-fj(z)s 8§ “[3¢+3¢"+¢”] and
F1(20’£0)5 ﬁlfj(zo) - %j(io)lp(jlzo) +¢
< §|fj<zo> - £,E)|pU]zp) +§|fj(£o> -, pUlzy) + ¢
< |xe|.|zo-2ol +K, (A.39)
(A.40)

< |1e| +K_ .

Equation (A.39) follows from Theorem l.4. Next

Faloldp) “21E If, (2 - @ e,z & N) Bty
. 1+1 +1 i+l

so from (A.39)-(A.40)

1, . ~ i
Fi1(or2p) < gl z |z, @D - 2, aH 5@ =) +K,

= ‘7‘9‘?1(‘0’20)“@ (A.a3)
and we solve the recursion (A.41) with initial condition (A.40) to get
a i -1
F(2gs20) S Ing| +R {1- gl 17 - (A.42)
K e R SRIT == e e
o "i ";;‘l'-‘._ .
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Theorem 1.6. If 8 € A(c), 6 = (Q,{P(x)}) then

p_ 8 e - gahigeHnY s (A.43)

for any probability row vectors z and £, where ( is defined in (65) and

WMI"“!H“

gn - (xl, ...,xn).

o=

Proof. Throughout this proof 5“ will be a fixed vector of source outputs
and 5" will be used to denote the first i components of ;n for 1 < n. Define

a(d) -"i!@j); and let C, be the set of columns of "1‘(:_:'1). Then

3
! .
gec LEILM  g.o(m)
u u
| ! <t p_m;xcn [1?v : ?1%‘3 ) 1mémvn "1%] “-4
SR
| ] v, & (1o, @ >0}, (A.46)

i | since zZ;, £1, and o, (n) are non-negative. We will prove A, S ;n'l by

induction. First Al < 1 since uy 2 0 and 01(1) 2 u, for u € cl. Now assume

T ; 841 cj"z. Note that
[QP(x,)ul, u
[QP(x e (3-1)], - o, ) (A.47)

P

where u € cj-l and u' € C,. Also if we define :

j.

¥y = (L:1P=g =11y > 0] (4.48)




PP -

. . . ‘ [ 1

~

Vj c vj, and since p(lei) >0 implies

[P(x,)uly u,
(P& )e(G-DI; ~ o G- (A.49)

we have
A 2 [P(x;)ul, o [P(x;)ul, "5
max max - —_—i A.
. €1 16‘75 (Px (-1, 1631 (BGx,)g (-1,

Let y = P(x,)g(J-1) and y 4 B(x,)y for some fixed x € C Let

31

a(u) é max [yi/w’_] and b(u) 4 min_ [yil":l.]‘ Also define
i€ Vj ie¢ Vj

[Q 11,
$W = mx T,

[ vl

-[T!-'_]-i- (A.51)

bu) = min

Then 1f W s {(k,m):ykwm > ymwk]
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I q]qG|m v, = 5.9)

2w -5 = max LaB
@ -bw :‘::kz'n a@[k)q e mw v

z ([qd|k)qt|m) ~q(i|m)qR|k) 1 (yw_-y W )

- wﬂ%m)ew[ (1:1:) u: ( ‘ ) u‘ P\
q q2im) +q(i m)q(t | k) Jw_w.
b (k,m)ew ma i) ey

la(t]k)q(4|m) - q(d|m)qe|R) (v ¥, =y w) , ;

® 12 Gemew [AGTOICTD *a([)aGlk)iv v,

- (5-1)e)? - ¢2 v, =y W)
< Q_LS_I.).s.)_z_s.z. nax ___k_:._ — mk
(L-(S~1)e) +e¢" (k,m)EW mk

= ¢(a(u) -b(u)). (A.52)

From (A.46) and (A.51) we have ;

oy = max (@ -5@)
ue€ cj-l

< max  {g(a(u) -b(u)]

(A.53)

.f as desired.
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Theorem 1,7. If 9,9 € A'(3), and the paramsters for 6 and @ are within ¢,
then if "n is the code for ¢ we have

-1 ~

tnan,e) <Kn " +Ks .

Pr P ~ .1 ~, 1 ~ 4 i
oof. For convenience let §(x |2y = Py |2g) and B(x"|2g) = By |2g)

in this proof. Then

r (£,.0) = m'lmzn 3" |zg)( min {F-10g 3="|)1}1 + 1og Bx"|2))
x k=0,1

1

. n-1 P(x, 412, (x7))

sol2+z PGz T log “’1%1
X 1=0 q(x1+1|zi(5 ))

(A.54)

where ‘z'i(a_:i') is the estimate derived from outputs 5" with 20 = 0. Now since

log xS (x-1)log e and Fx'lzy) = ¢ 3" zg)
 POPRTEI
we have
-1, Mo 1+1
r, (4 ,8)Sn (2+ £ 6 logesx , P |zo)-
i=0 X
Ipxy,ql2, @M -aGx g 18 @D - @59

Now

lp(x|2)-q(x|2)| < |p(x|z)~-p(x|£)| +|p(x|2)-q(x|2) |

= lygx)-v; )| o|z-E] + |1, B) +0 o(®) - T (@) - A, (D))
(A.56)

where nxi. is defined in (A.37).
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The second term is at most 4¢ + 202 80

3 n-l '
r (¢,0)s20 1+ () 10g oz f+1§(51+1|zo)o|yo(x)-yl(x)'olzi(gi)- Xow]

- + be +2¢2 (A.57)

snd from Theorem 1.5

r (4,,8) < Kn~l + Ke (A.58)

where K and K are defined in (95) and (96).

! : Theorem 1.8. 1f rn(e) = R_(8) -J'Cc(e) is the redundancy of the code £ then

- r@®sata-21gy . (A.59)

. ’ r Proof. The entropy of blocks of source output X € A" given no previous
y - l. outputs is
l, HE = T P(x|2*)1log P(x|z*) (A.60)
§ €A
» l since z* is the stationary distribution of the switching process Z;. Further
} : °
: é we know

| L

g n "B X 2 a(xllgo,x.l,...)

! = :K'c(ﬂ) ’ (A.61)

where Kc(e) is the entropy of theé source. The average rate of the code "n
applied to source 8 1is
RO =0 £ Bl @ (A.62)
X €A

and since £ 1is the Huffman code for {p(x|z*): x € A"} ve have

Gl D Em oW mm P ™M
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ok (0) 2 H (®) = sk (®) -1 . (A.63)

Let zo be the initial state of the switching process and let T be the
first switching time (we set T = n if the first switch occurs after time n).
Then

n ¥ (0) = B X|xg,...)
2 B (X|25, T X+ )
= 1 (x[z5,1) (A.64)
since xi, 12 1, is independent of (xo,x-l,...) given zo. Next

B (X|2,,T) =E[- E Y, (x)log ¥ - I P(x|2*)log P(x|z*)]
n(_‘ 0 x € AT zo(_ zo(-) x € An--rp(_l (_I

(A.65)
where the expectation is over zo and T, and
m
@ & 1y
m
= 1 Plx =x25 =y (A.66)

i=1

for x € A". Ve know
B & 28 Q& -klogJ

since the source alphabet has J letters. Since the second sum of (A.65) is

the expectation over T of H n-'r@) and since the first sum is positive we

have

et et R




i tate ae

o A

B &|Z5,D) = Bl (D))
2 nn(g_) - E[T]log J

=

- .
» 2 Hn(_&) - p 108 J .
So from (A.61) and (A.64) we have
- 1
H (X) 20X (8) 2 B (X) - 7 log J
i hence from (A.63)
! i
R_(8) -X (8) < n~Y(1 + L 108 7)
! n c o
(.
f as desired.

. e o«
TP %) c s
: ““‘r,‘:m”a
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(A.67)

(A.68)

(A.69)

R
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APPENDIX B

PROOF OF REDUNDANCY BOUND FOR THE VL-FL CODE OF CHAPTER 2

In {13] a set ' - (cpi; i = 1....,Yn} is constructed with

Y, =S cxpzls[ns(J-l)los 9Jnl + 2 1og 7 +J}) (8.1)
such that if 6 € A has transition probabilities Py and inicial state s
then there exists a ¢ € 'n with transition probabilities pq, and initial state
s, such that
X_gupoid) & T pycxl)iog P < o1 (B.2)
Pg 2P, - Pg (X og n .
e’y xeAe Pcp(xj)
for all j = 1,2,...,S. Further, if ¢ is in ’n then
1
min{p(p(x”): J €S, xE A} = 35q (8.3)
Let § be this set. From (152), 1 A< n + llog y] then
Ra(T,0) < [n+ Mogy 1111, )17} (B.4)
nv'n’"’ = 8y 0 ' n

where [‘n is the code for ¢ and J'Cr(pe,po;j) < n-l for = 1,2,...,8S. For,

convenience denote Pg by v and pq) by 7. Now 2°" is the average probability
of the strings in rn’ so by (148)
-n_1
nx)/2 "< ;S 9Jn (B.5)

where o is the minimum transition probability of ¢. So we have

ns

v(@) {1og[n @) /27" + loglv (x)/N(x)] - log v(x)}

z
x€T
= n

<

v(x){-log v(x) +log(v(x)/N(x)1} + log 9In . (B.6)

n

z
x€T
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Next defime
0% I v@lslv@N@Il= T v ‘9 vy leyo)
- viX)ioglv(x xX)]= X og
€T x€ r: S e [ O
L v(xil'i-l)
= z Z,. z x)log "
i=] geAi 1 563&)\,(- Tl(xil'i-l) (B.7)
where s; = j, 8, = £(x,_,,8, ;). L = max{4(x): x € Pn} and
B@ 8 x€r : x =ap, 1SkS1-1, 400 2 1}. (8.8)
Note B(g) = rn for 1 = 1. Next, since
tég) l
x) = v(@) (x.18,.4) » (8.9)
v | @ v k-1
if we splitc z into L z we have
x € B(@) BEA xE€ Ba)
x,= B
L vele, ) | @
= % z v® g log z I vixls ).
AN Av(5|81-1) M@Ts, ) x € B(@) kei+l *g!%k-1
x= P (8.10)

Now in an encoding tree the total probability of the leaves which may

be reached by passing through a given node is equal to the probability

of that node. The innermost sum is the total probability of the paths
from a node to all of its leaves, which is the total probability of the
leaves divided by the probability of the node. Hence this sum is one
unless it is empty. Further, since each non-terminal node has J successors

(one for each x € A) 1f no x € B(x) exists such that X = # then all

x € B(g) must be of length i-1. So Lif the innermost sum is zero, then




,

L

98
the sum over B is also zero. 5o we have
L v(Bls, )
Q=% z vi@ £@ I v(@Bls,_y)log (8.11)
=1 g€ al"? BEA 1-17%8 NCTs, _p)
where
1 if £(x) = i for some x € B(®)
f(@ =
0 otherwise
Now the innermost sum is Kr(pe’pcp;'i-l) <! for any s,_,, 80
-1 L
a<at I I, v@f@ (8.12)
i=1 o €A
.1 L
=" £ I v
i=l x €T,
L(x) 21
eal = v =aTt Ty - (8.13)
X € l"n

We substitute this into (B.6) to get

{n+ Mog Y‘;l ][ie(rn)]-ls 8 Gzt‘ v(x)1log v(x) +1og 9Jn+ Mlog Y::' -[1a(t'n)]'1+n'1
e (8.14)
<X ,,8) + {1og 93n+ Mog v ] }e(Ey (rn)1‘1+n‘1.
(B.15)
1f n > log 9Jn, then (3.15) implies
f,ry 2 9—'—1-'33—9-‘1'-'—_-]: . (B.16)
Y K(E,8)+n
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So from (B.4), (8.15), and (B,.16)
e el .1 (1og 93n+ Mog v1)6cq ,0) +a™h)
n[‘e(rn)] S!C(T'n,e) +n "+ n - W&In — . (3.17)
Define the entropy of the set of strings I' as
KT,0) == £ v@logv(x) - (B.18)
x€T
Since the encoding tree for I a is a subset of the tree for l“; we have
XTs,0) = K@ _,0) . (B.19)
Further
1.0w 21
therefore
AL, )1 - @0 = (B - R0 1(Z, @ 17
2 (3 - R0 1,17
b
b fa(rﬁ, ) . (3.20)
From (B.l) we have
Mog yn1 < % s(J-l)logn + C (8.21)
where
c 8 10gs + ¥s(J-1)log 97 + 25 logd + §(J+2) + 1 (8.22)

8o we may rewrite (B.1l7) as
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z’ X §(J-1)logn + logn Ca
‘ ra (rﬁ »8) Sx(rn'e)[ n - log 9Jn ] *a- log 9Ja ° (8.23)
c_ & (log 91+ ,,0) +2+a (¥ SU-Lloga+C) . (8.24)

Now if we follow the steps in (B.7)=(B.1ll) but with Q' =-E v(x)log v(x) in

‘ place of Q we get

L
' Q'=f I, v@Ef@ I v@ls,_,)log v®ls, ;) (8.25)
te1 geatl sea il 1-1

and since the innermost sum is less than or equal to log J

(T _,0) = 0'[Ie(rn)]'1 <logJ . (8.26)

From (B.21) we have

C_ <K 4 (log 9J+C)(logl) + 2 + ¥ S(J-1) +C . (B.27)
‘ Let
1 R8xs@-1)+1 . (B.28)
b Then
] A<n+ (K-1logn+C (8.29)
and
| e
tary) s K loa Jeloan+ K (8.30)
l- n=-Klogn-~C'
. where
i- c' 8¢+ 10895 . (8.31)

Then {f we define

K(R) = 5‘1[12 log A +C'} (B.32)
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we have
~ * anl & Py ot PO
rﬁ(rﬁ) S n [K log Jelog n +KI[ £ ([K(@)]] . (B.33)
1=0
So if
a 2 ' a2
nz 2(K" + C')(log n) (B.34)
we have
f»a(rz.) < 27 10g J[AS(I-1)10g A+1og A} +A~L(2R+1) . (8.35)

as desired.

If A is the class of binary memoryless sources we may eliminate the log n

term from (B.35). We let § be defined as {cpi: i= 1,...,yn] where

, for 1Si <% Y,
Py e (B.36)

2 =2
1-2(yn-i-+1) Y, ° for % Yo <i< Yo

and Y, = LA\/;U . Then it is easily shown, ([12] equations (18)-(20)), that for
8< .51f0 € [9,,9, ;] then X (68,9, ;) < 2n°L. we may replace log 9Jn in

(B.6)=(B.23) with log cp;]', where 8 € (9, ,,9,] and (B.23) becomes

X log n + log (p;]'

: ]+ L — . (8.37)
n - log .2

a
Ta(la) < H(O) [
non n - log @,
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But for © € “”1-1"’1] we have
-1 -1 ‘
(log P YH(®) < log 6 ~ H(O) ,
<1.69 . (B.38)

By the same steps as (B.30)-(B.33) this implies
" A "~ A.]. i
2C3) < % 87 log A + Kyd (8.39)
where K3 & 2(K+1.69), for ‘
é
A2 (4 log n+1.69+K)(6+2 log ). |
]

For 6 » .5 the same bound holds since Qn is symmetric about 6 = .5.
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APPENDIX C
PROOFS AND DERIVATIONS FOR CHAPTER 3
Theorem 3.1. 1f fn is a code and

X_(8:9) +X_ (9:0) <€
then
Ice ;0) - D(£ 59| S 5e2 log )X g¥ .

Proof of Theorem. Let J be a positive integer and define

A‘;-{ge B%: n” L &£ (X)) € (m-_lmn

If we define h(x) & p, (@) - @, 3 @ Mmd i, and 8 & {x:h(x) s 0}

we have
[ ]

n{D(£ ;8) - D(E 50| = | mE1 j‘Amdn(g,fn@)h@dx\

<|cz sl J\ h@ax + 3t N ng R@ex|
m=1 ] m

s|z wl[, h@ex+ 37 [, h@ax|
m=1 m

|2 n” J‘ h(x)dx| + 37
o=1

J! -
-1z ar My (ag) - holA 1l + 3 1
me=

vhere 4y (8) & [ py(x)ax for s B,
B

(c.1l)

(c.2)

.3)

(c.4)

(C.5)
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For each of notation let Pn ] ue(An) and 9 4 “«p(“n) for m=1,2,...,J'. By

definition (177)
3X_(939) T log
39) 2 T p,log
R T T

8o the problem reduces to finding

J!
g(r,q) = max I wi'(p -q) (c.6)
(’1"‘1} [Pt sqil w1 L

subject to the following constraints:

J' Py J' q
1) X*(p,q) é 3 Pglog =+ L q log==<¢
1= Y =1 Py

1) Tp, "L q =1
I

141) p,20andq 20 VL .

Since max g(p,q) = -min g(p,q) by symmetry, we may bound (C.5) by
{P‘_ ’qi} {Pi 294

bounding (C.6). From i) we see that

pi-Oqu-O.

§(P:Qo191 Y WY ) =g(p,q) +1 w(PvQ)'

P 9 P, .,\)q..

where A, p’l are Lagrange multipliers and Vpi and Vai are zero if Py

q
and q, are positive, and positive if Py =9 =0, We must have

M. 0 and M. at the maximizing {p,,q,}. Let W be the subset of
op %9y 1

{1,2,...,3'} such that 1 € W implies p; and q, are positive. Then for

{ € W wve have




-1 Py hr &
B =13 +1{logq +1- ]+>.p-o

1 Py

s q P
B w gyt s [1 Li1.31% -
dqi J A]log P, )‘q 0.
These imply
q P
)‘[2-—1—-—1+)‘ +\A =0
Py 9 P q
which is equivalent to
Py 4 .

-4 ~= = K C.10
3t e (C-10)

vhere K is independent of i. Now (C.10) can have only two solutions for

P

f, some T and 'n-l. But from (C.8)
i

457ty

log —~+1-—=2 —uu=DP .
og % P, x (C.11)
Py
The left-hand side is a function of = hence it has at most two distinct
values, but the right~hand side is different for all 1. So we must have
only two elements in W; that is, only two pairs, say (p‘,q ‘) and (pb,qb),
may be non-zero. Now P, " 1 =Py and q, = 1 - q from 11) and from (C.1ll)
P Q
ve have == = 2 so

a P

Py -9, =2p, - L (C.12)

The values of a2 and b do not affect the relative entropy constraint {), but

-1
max g(p,q) = max J [a(p_-q)+b(p, -q,)]
{Pi ’ q1} [pi. s qi} 4 ‘ pb b

= max_ 37l (a-b)(2p, - 1).
{p,
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So for a maximum we must have a=1, b=J' or visa versa. The problem is

now simplified to finding the maximum of |2p.- 1{ subject to

Pq 1-p,
e, 4 2[p, 108 Tpo + (9 los 5] <

aud 1> P, 0. Now

T(,) 2 2 log & [2p, -1 €. 16)
80

2

g221loge [Zp.-l.]
or .

|29, - 1| < £¥(2108 &)7F . (c.15)

So from (C.13) we have

- 1% -
max L o (p_~-q)SJ'J " £g%(2log e)
{prqy} wel "%

< nd g,’(Zlog e)-”

which substituted into (C.5) gives

|D(£,30) - D(E ;9)| < D g"(nog e)"‘ + @nt. (C.16)
Since (C.16) holds for all J
IpCe i0) - Dt ;)| S B (2108 &)"F (€.17)

as desired.

e~ mem e A e ey e et

P e—= e —————




Derivation of Eq. (199). Let 8 = (a),...,8,0°) and @ = (al,...,a!,8%)
and assume (|6 -qf] < ¢. Given initial state xo = (X_yseeeaXy)

%,050 = 07 [, pyalx’)lon %

0
5 1""’*_1-1:'-‘- ) Ix pe(‘jl‘j-l"""j-k)

pe(lexj 1,...,! -k) s
P (xj]x 10t 0%y ) j""’ Xk (c.19)

n=-1
pe(_lx ) = jno pe(lex 1,...,:::| k)

The inner integral of (C.19) is the entropy of a Gaussian distribution

n( j.02) relative to a distribution 7(m} ,6’2) where

k

Illj - -12181 xj_i
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: (C.20)
m!' =L a'x . C.
I gy
We may sasily evaluate this integral to get
X, (&9) < ¥ log o (s” - 8% (08)"2
+a 18 n};lI Pa(X, vseresX, o )(m --')zdx coodx, .]
=0 Sl D b s T s B M B S B
2 4, .12l k k
<k ¢ logeflo, +n 0, £ L I E.[X. .X, _1}. c.21
1 1,.1_01_““_1 9'%§1"j-m (c.21)
Since
i-1
1.0 j
X. =[vyx + Z v¢v' z, ,]
L oo ¥ A-gh
and §0 = 0 we have
i-1
E [X] = E [ t vz 2t [v’lr]
el el T Feg ey 1.1
i-1
j.2 2
- (v°1] C.22
gmo - L1° .2
Further
BIX,X,] S ux(E[x:],E[xi])
and from (C.33) E,(X.]2 se[xil for 1 = §, 80
By1X 4%y p] S 0500 c.23)

vhera
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|
|
I o2 & ua ze[le .
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If we define
S a: = max ai(e)
: 0 €A

we have from (C.20)

X (0:9) S ¥ ‘2 log e[a;‘a +ai K> o: ] (C.24)
as desired.
'- n-l 2
§ Derivation of (207). Here we bound £ ;i . To do this we first

i=0

k Now Yi has eigenvalue-eigenvector

bound *im where Yi' - {*:mll.npl R

’ ) decomposition

) . Let V = [vl.m] and v} = [u‘m} and define

ne= o ::: max {|u, |,|v, |}

Since A is compact and V is invertable for all 6 € A (recall LN ¢ 0 for

¢ AU L e B, Wieascmi

| @ € A) we have | < @, Let A be the maximum eigenvalue for any ¥
- ) : corresponding to & source 8 € A, To bound .:m’ the worst case is where Y

has a single eigenvalue equal to A. This gives

o
e e,

! : E= 1
0 Al

Then we may compute v 1l to get [23, pp. 156]
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:21 Vem z u“(k_j) A 3 L2k (C.25)
- =1
1
'tm - 4
k n
L v T u, (Il . 5k, (€.26)
Lt-l tm j=-1 ‘j(--j
So for 1 <k
g o<kn? T dat-d
im ) b |
1
sk T (j)xj
J=0
=k n2a+nt, (c.27)
and for 1 2 k
S g(int-m-j
'zm T‘ J-l k’j .
Since
10 1
(v"x"], < max 4, |k
1 l.m l ‘-‘
we have
n-1 rk-l n n 2
T s T aenes ( L (r )1"“*’)] .
1=0 il 1ok \ ju1 %4

(C.28)

fow (D 2 (L) e
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n m 2 n k 2
z ( z <kfj>x""*’) s T (bzaz)"“( z (;‘nﬁ
fek\ j=1 1=k =1

n
s £ Hladtasn*-1?

i=k

o 2
< [ > (;)11"‘ ] ra+nk-112 (c.29)
1=k

. @-020 D4k -12 (c.30)

where (C.29) follows because T x> S @ x;)° for x, = 0. Finally we substitute

(C.30) into (C.28) to get

n=-1
z uf < v’ (c.31)
i=]
where k-1
n &2t -0 2D aenk-12 + T a+n®E (32

i=1

and h is independent of n as desired.
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